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Abstract Multiple-point-based geostatistical methods are used to model complex geological structures.
However, a training image containing the characteristic patterns of the Earth model has to be provided. If
no training image is available, two-point (i.e., covariance-based) geostatistical methods are typically applied
instead because these methods provide fewer constraints on the Earth model. This study is motivated
by the case where 1-D vertical training images are available through borehole logs, whereas little or no
information about horizontal dependencies exists. This problem is solved by developing theory that
makes it possible to combine information from multiple- and two-point geostatistics for different
directions, leading to a mixed-point geostatistical model. An example of combining information from
the multiple-point-based single normal equation simulation algorithm and two-point-based sequential
indicator simulation algorithm is provided. The mixed-point geostatistical model is used for conditional
sequential simulation based on vertical training images from five borehole logs and a range parameter
describing the horizontal dependencies.

1. Introduction

Geostatistical methods are traditionally used for spatial estimation and simulation of geological phe-
nomenons and are used for advanced spatial interpolations, predictions, visualizations or, more recently, as
prior source of information in inversion of geophysical and remote sensing data [Hansen et al., 2008; Zhang
et al., 2009; Boucher, 2009; Irving and Singha, 2010; Mariethoz et al., 2010; Cordua et al., 2012; Ruggeri et al.,
2013; Jha et al., 2013; Cordua et al., 2014]. Realistic and trustworthy geostatistical models are, therefore, cru-
cial in, e.g., quantitative geology, natural resources evaluation, reservoir modeling, and geophysical inverse
problems in order to obtain geologically feasible solutions.

Geostatistical models allow a flexible way of describing spatial dependencies of the Earth model, ranging
from low-information distributions (through two-point/covariance-based geostatistics) [Journel and Isaaks,
1984; Soares, 2001] to information-rich distributions (through multiple-point geostatistics) [Guardiano and
Srivastava, 2009; Strebelle, 2002]. However, until now, no geostatistical model has been developed that is
capable of combining independent and considerably different spatial statistics (e.g., two- and multiple-point
geostatistics) for different directions into a single geostatistical model.

Here we develop such a flexible geostatistical model for cases where the Earth model is correctly described
by considerably different types of spatial information in different directions. In this way, more correct geo-
statistical models that are able to capture the actual knowledge available about the spatial variability can be
designed without, as today, having to make use of a geostatistical model that may make implicit assump-
tions not accounted for by observations. Such problems may occur in all fields of geophysics relying on
geostatistical models.

Information-rich complex geostatistical models based on multiple-point geostatistics rely on training images
of the geological structures expected (a priori) to be found in the subsurface. The probabilistic spatial
dependencies describing the geological structures can then be obtained from these images. However, in
many settings such observed scenes/images cannot be provided and, instead, low-information geostatistical
models based on two-point geostatistics can be applied.
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In this study, we consider the case where 1-D training images describing the vertical dependencies of the
subsurface are obtained from borehole logs, whereas only weak information about the horizontal dependen-
cies exists (e.g., from the fact that multiple boreholes are present or can be inferred indirectly from seismic
data [Carpentier and Roy-Chowdhury, 2009]). Hence, in this case, a model based on multiple-point geostatis-
tics is suitable for describing vertical spatial dependencies, whereas the horizontal dependencies are more
appropriately described by a model based on two-point geostatistics.

We develop theory that can be used to formulate a probability distribution that combines two different
types of information (e.g., two-point and multiple-point) for different directions. We will refer to the distribu-
tion that combines the two- and multiple-point-based distributions as a distribution based on mixed-point
geostatistics.

Finally, a sampling algorithm based on sequential simulation that is able to perform conditional sampling
from combined distributions, such as the distribution based on mixed-point geostatistics, is developed
and tested.

2. Combining Probability Distributions for Different Directions

Consider a set of Earth model parameters m = (m1,m2,… ,mN)T associated with positions in a regular grid.
For each model parameter mi a conditional probability distribution p(mi|V) exists that is conditioned by a set
of parameter values V located within some local neighborhood.

Now consider the case depicted in Figure 1 where two different conditional probability distributions
p1(mi | V1) and p2(mi | V2) over mi conditioned by two different sets of parameters are defined. p1 is con-
ditioned by parameters within a neighborhood located above and below mi , whereas p2 is conditioned by
parameters within a neighborhood located to the left and right of mi.

Assume that dependency between the model parameters is only known in the directions of the extend of V1

and V2 and that these dependencies are defined by p1(mi |V1) and p2(mi |V2), respectively. As a consequence
of this, no information about the dependencies between the parameters in V1 and V2 is known and, therefore,
the probability distributions over these parameters are based on mutually independent information, which
is expressed as

p(V1,V2) = p(V1)p(V2) (1)

The model parameter mi is dependent on both sets of parameters V1 and V2; hence,

p(mi | V1,V2) ≠ p(mi) (2)

The joint probability distribution over mi, V1, and V2 can be expressed using the following trivial relation:

p(mi,V1,V2) = p(mi)
p(mi,V1)

p(mi)
p(mi,V1,V2)

p(mi,V1)
(3)

Since the probability distribution over V2 is independent of V1 (as expressed by equation (1)), the joint
distribution in equation (3) can be formulated as

p(mi,V1,V2) = p(mi)p(V1 | mi)p(V2 | mi) (4)

=
p(mi)p(V1,mi)p(V2,mi)

p(mi)2
(5)

Based on equations (5) and (1), the conditional distribution over mi given both V1 and V2 can be obtained as

p(mi | V1,V2) =
p(mi)p(V1,mi)p(V2,mi)

p(V1)p(V2)p(mi)2
(6)

=
p(mi | V1)p(mi | V2)

p(mi)
(7)
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Figure 1. A regular grid of cells where each cell is associated with a
parameter mi, i = 1,… ,N. V1 and V2 are subsets of the parameters
that are independent. However, both V1 and V2 are dependent
on mi .

For a general case with L nonoverlapping
neighborhoods equation (7) is given as

p(mi | V1,V2,… ,VL) =

L∏
k=1

p(mi | Vk)

p(mi)L−1
(8)

This equation will not be applied here
but is applicable in cases of, e.g., 3-D/4-D
models (L = 3∕L = 4, with time as the fourth
dimension) or for a larger set of nonoverlap-
ping neighborhoods/conditioning events
V1,V2,… ,VL.

A joint distribution over a set of parame-
ters p(m1,m2,… ,mN) can be constructed as
a product of 1-D conditional distributions
over the individual parameters [Toftaker and
Tjelmeland, 2013]

p(m1,m2,… ,mN) =
N∏

i=1

p(mi | mNi
), (9)

where mNi
are parameters within some neighborhood around mi that mi is dependent on. This distribution is

also known as a partially ordered Markov model [Toftaker and Tjelmeland, 2013].

Now consider a sequential simulation algorithm using a local neighborhood. The joint distribution that
is sampled by such an algorithm is expressed by equation (9), where mNi

contains previously simulated

Figure 2. Five training images obtained from borehole logs,
which contain information about the vertical spatial
dependencies.

parameters inside the neighborhood around mi .
Hence, the joint distribution over all parameters m
sampled by a sequential simulation algorithm that
uses equation (8) as local conditional distributions
is expressed as

p(m) =
N∏

i=1

L∏
k=1

p
(

mi | Vk(mi)
)

p(mi)L−1
, (10)

where Vk(mi) is the kth set of parameters that mi

is dependent on. The number of parameters con-
tained in the individual sets Vk(mi) depends on
the order by which the product in equation (10) is
evaluated (i.e., the random path used).

3. Combining Two- and Multiple-Point
Geostatistics

Geostatistical simulation algorithms that are
based on sequential simulation calculate and
use local conditional probability distributions as
part of the simulation process. Hence, two- and
multiple-point (TP and MP)-based simulation algo-
rithms are capable of providing local conditional
distributions (pTP(mi | V1) and pMP(mi | V2)) based
on two- or multiple-point statistics, respectively.

In the example presented here, conditional
distributions based on two-point geostatistics
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are provided by the sequential indicator simulation (SISIM) algorithm [Journel and Alabert, 1989;
Gómez-Hernández and Srivastava, 1990] and conditional distributions based on multiple-point geostatis-
tics are provided by the single normal equation simulation (SNESIM) algorithm [Strebelle, 2002]. Using
equation (10), it is possible to formulate a joint probability distribution over the set of all parameters m based
on a series of 1-D conditional distributions

p(m) =
N∏

i=1

pTP(mi | V1)pMP(mi | V2)
p(mi)

. (11)

The conditional distributions provided by SNESIM, pMP(mi | V1), is based on multiple-point statistics obtained
from one-dimensional training images (e.g., see Figure 2) and describes the vertical spatial dependencies. The
conditioning data event used for this distribution is located within a local neighborhood only in the same
column as mi (see Figure 1). pTP(mi | V2) is provided by SISIM and describes the horizontal dependencies via
a covariance function. The conditioning event V2 contains parameters within a local neighborhood located
only in the same row as mi (see Figure 1). By assuming stationarity, the 1-D marginal distribution p(mi) is the
same everywhere and is obtained from the training images.

4. Sequential Simulation of the Mixed-Point Geostatistical Model

The sequential simulation algorithm that samples the mixed-point geostatistical model in equation (11) takes
the following steps:

1. All model parameters (i.e., pixels) are initially unrealized.
2. Visit, by random, a parameter mi (see details below regarding the random choice).
3. Use the SISIM and SNESIM algorithms to calculate pMP(mi | V1) and pTP(mi | V2), respectively. V1 and V2 con-

tain previously simulated parameters inside the neighborhoods located above/below and left/right relative
to mi , respectively. For some positions (including the first position) no previously simulated parameters are
located within the neighborhoods. For such positions we may have that V1 = ∅ and/or V2 = ∅, where ∅ is
the empty set.

4. Draw a value from

p(mi | V1,V2) =
pMP(mi | V1)pTP(mi | V2)

p(mi)
(12)

using inverse transform sampling.
5. Repeat step 2–4 until all parameters have been visited.

In this way, a realization from equation (11) is obtained.

From information theory we have the following inequality of the entropy H of a probability distribution [Cover
and Thomas, 2005]

H(m1 | m2) ≤ H(m1), (13)

with equality if p(m1) and p(m2) are independent. H(m1) is the Shannon entropy of the distribution p(m1)
[Shannon, 1948]. The higher entropy, the less information does the distribution contain.

Equation (13) describes that as the number of conditioning parameters increases in the local conditional dis-
tributions, the information content of the distribution increases. In order to sample from a joint distribution
(equation (11)) that contains as much information as possible, the randomness of the sequences, in which
the parameters are sequentially simulated, has to be designed in such a way that the number of conditioning
parameters for the individual 1-D distributions will be high. Since the conditional distributions in equation (12)
are only conditioned by parameters in the same column and row as mi, the size of the conditioning events
will be larger if the next parameter to be simulated is located in the same row and/or column as previously
simulated parameters.

A sequential simulation path that honors this criteria is explained by Figure 3. The path is designed such that
the next parameter to be simulated has as many nearby parameters as possible as conditioning parameter
values. This random path has the following steps and rules:

1. The first parameter is chosen completely random among all parameters (see Figure 3 I).
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Figure 3. Eight steps of the sequential simulation algorithm using a random path conditioned on previously simulated
positions. The parameter to be simulated in the individual steps, marked by a cross, is chosen randomly among the
positions marked by blue. The blue positions depend on the previously simulated position in such a way that the next
parameter to be simulated is conditioned by as many as possible of the previously simulated parameters in its
neighborhood.

2. Hereafter, choose randomly a position that is located in the same row and/or column as a previously
simulated parameter (Figure 3 II - VIII).

Step 2 may in some instances lead to only a single or a few possible positions when a row or a column of a
previously simulated parameter is intersecting (e.g., Figure 3 IV, VI and VIII).

When the algorithm described in this section samples from the mixed-point geostatistical model
(equation (11)), it will be referred to as a mixed-point geostatistical sequential simulation (MIXSIM) algorithm.

5. Numerical Examples

Figure 4a shows 40 independent vertical realizations from the SNESIM algorithm using single-grid sequential
simulation and a template of 17 × 1 pixels. The conditional probability distribution pMP(mi | V1) used in the

Figure 4. (a) The 40 independent 1-D vertical (500 × 1 pixels) realizations obtained through sequential simulation using
pMP(mi | V1) from SNESIM. The pattern statistics used to define pMP is obtained from the training images in Figure 2.
(b) The 40 independent horizontal (1 × 500 pixels) realizations obtained through sequential simulation of pTP(mi | V2)
in SISIM using a range of 50 pixels and a 1-D marginal distribution obtained from the training images.
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Figure 5. (a) Three realizations of 500 by 300 pixels obtained through sequential simulation of the mixed-point geostatistical model (i.e., using MIXSIM). Two
boreholes (i.e., realizations from Figure 4a), located at distances x = 1000m and x = 2000m and marked by black rectangles, are used as conditioning data.
(b) One-point statistics based on realizations from SISIM, SNESIM, and MIXSIM. (c) Two-point statistics based on realizations from SISIM and MIXSIM using a 1 × 2
pixels template. (d) Ten-point statistics based on realizations from SNESIM and MIXSIM using a 10 × 1 pixels template. Note the piecewise linear y axis in
Figures 5c and 5d.
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individual steps of the sequential simulation procedure is based on the pattern statistics obtained from the
training images in Figure 2.

Figure 4b shows 40 independent horizontal realizations from the SISIM algorithm using single-grid sequential
simulation. The conditional probability distribution pTP(mi | V2) used for the sequential simulation in SISIM is
based on a spherical covariance function with a range of 50 pixels. The one-dimensional marginal distribution
needed by SISIM is obtained from the training images in Figure 2.

Three independent realizations obtained from the MIXSIM algorithm that combines pMP(mi | V1) and
pTP(mi | V2) are seen in Figure 5a. The values within the black frames (in x = 1000 m and x = 2000 m)
indicate positions of hard conditioning data representing two boreholes. The mixed-point geostatistical
model (equation (11)) is sampled using the single-grid-based sequential simulation strategy described in
section 4. A first visual comparison between the vertical and horizontal patterns in Figure 5a and the patterns
in Figures 4a and 4b, respectively, indicates that the mixed-point geostatistical model has been successful in
reproducing both the multiple- and two-point statistics.

Different pattern statistics have been obtained and compared in order to check, quantitatively, the reliability
of the MIXSIM algorithm. Figure 5b shows a comparison between one-point statistics from realizations of the
SISIM, SNESIM, and MIXSIM algorithms. Figure 5c shows a comparison of the two-point statistics produced
by SISIM and MIXSIM, and Figure 5d shows a comparison of the 10-point statistics obtained from SNESIM
and MIXSIM. All of the comparisons show good agreement between the tested pattern frequencies, and no
significant biases are observed. However, the pattern frequencies are not matching exactly, which may be a
result of MIXSIM having to satisfy two different types of statistics simultaneously.

6. Discussion

All geostatistical algorithms that are based on sequential simulation will in each step of the simulation draw a
value from some 1-D marginal or conditional distribution. If two different conditional distributions p1(mi | V1)
and p2(mi | V2) describing two different types of spatial statistics can be defined (possibly originating from
two different types of geostatistical simulation algoritms), then these conditionals can be combined into a
mixed-point geostatistical model using equation (7) and sampled through sequential simulation using the
random path described in section 4. The only demand is that these distributions need to share the same 1-D
marginal distribution p(mi) for all parameters/positions i in the grid to be simulated.

The example demonstrated in this paper is assuming noninclining strata with orthogonal extends of V1 and V2

at all locations. However, one can imagine that the algorithm can be adapted to inclined strata by locally tilting
the direction of V2 (i.e., the horizontal part) such that it follows the local direction of the inclining structure,
while V1 (i.e., the vertical part) follows the direction of the well.

The expressions in equations (7) and (8) are based on the implicit assumption that p(V1) and p(V2) are based
on mutually independent information, as expressed by equation (1). According to equation (13), this is the
maximum entropy (i.e., minimum information) assumption. Hence, by only knowing the dependencies in
orthogonal directions implicitly involves a maximum entropy assumption in directions that deviates from
the directions of known dependencies (i.e., the most information-neutral assumption is used in directions of
unknown dependencies).

Examples of combining conditional distributions while assuming dependence between the conditioning
events are seen in Caers [2006] and Comunian et al. [2012]. In their work, this was achieved using probability
aggregation methods such as the Tau model and linear pooling methods [Krishnan, 2008; Allard et al., 2012].
Hence, if information about the dependencies between the conditioning events V1,V2,… ,VL are known,
probability aggregation methods may provide a way of including this information [Comunian et al., 2012].

7. Conclusion

The necessary theory needed in order to construct a probability distribution that combines different
conditional probability distributions for different directions has been developed. This theory has been uti-
lized to design a mixed-point geostatistical model that combines conditional distributions from two- and
multiple-point-based geostatistical algorithms, and it is used to describe independent and considerably
different spatial dependencies in the horizontal and vertical directions, respectively. A sequential simulation
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algorithm that can be used to sample the mixed-point geostatistical model has been designed. The devel-
oped mixed-point geostatistical model and the associated sampling algorithm (MIXSIM) was successfully used
for conditional simulation of a 2-D field of parameters. In this case, training image-based information about
the vertical dependencies was provided by borehole logs, using the SNESIM algorithm, and the horizontal
dependencies was described by the SISIM algorithm based on a covariance model.
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