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Glymphatic clearance controls
state-dependent changes in
brain lactate concentration
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Abstract

Brain lactate concentration is higher during wakefulness than in sleep. However, it is unknown why arousal is linked to an

increase in brain lactate and why lactate declines within minutes of sleep. Here, we show that the glymphatic system is

responsible for state-dependent changes in brain lactate concentration. Suppression of glymphatic function via acetazo-

lamide treatment, cisterna magna puncture, aquaporin 4 deletion, or changes in body position reduced the decline in

brain lactate normally observed when awake mice transition into sleep or anesthesia. Concurrently, the same manipu-

lations diminished accumulation of lactate in cervical, but not in inguinal lymph nodes when mice were anesthetized.

Thus, our study suggests that brain lactate is an excellent biomarker of the sleep–wake cycle and increases further during

sleep deprivation, because brain lactate is inversely correlated with glymphatic-lymphatic clearance. This analysis pro-

vides fundamental new insight into brain energy metabolism by demonstrating that glucose that is not fully oxidized can

be exported as lactate via glymphatic-lymphatic fluid transport.
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Introduction

The energy metabolism of the central nervous system
(CNS) relies almost exclusively on glucose. Classical
studies have shown that the brain’s O2:glucose extrac-
tion ratio at rest is 5.5:1 and thus �9% of glucose is
unaccounted for in terms of oxidative metabolism.1–5

The fate of glucose that is not fully oxidized remains
unclear.6–8 Here, we explored the possibility that the
glymphatic system constitutes a pathway for export of
the brain’s metabolic waste products. The glymphatic
system is a highly organized fluid transport system that
by convective flow drives exchange of interstitial fluid
(ISF) with cerebrospinal fluid (CSF) in mice and
rats,9,10 as well as in human brain.11,12 In turn, CSF
exits the CNS by multiple routes, including the cribri-
form plate positioned under the olfactory bulb, arach-
noid granules, peri-venous spaces, and along cranial
and spinal nerves. The outflowing CSF collects in the
connective tissues surrounding the brain and is ultim-
ately collected by meningeal and cervical lymph vessels

and returned to the general circulation at the level of
vena cava.13–15 Thus, the possibility exists that lactate
generated within the CNS is transported out via the
glymphatic-lymphatic clearance system.

The analysis presented here took advantage of the
fact that the glymphatic system is controlled by the
sleep–wake cycle and is primarily active during sleep
and anesthesia, while suppressed during wakefulness.16
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Several groups have shown that brain lactate is highest
during wakefulness and declines during the transition
into either natural sleep or anesthesia.17–22 We first con-
firmed that brain lactate levels are highest in awake
behaving mice and �20–30% lower during sleep or
anesthesia. We next asked whether suppression of
glymphatic activity would reduce the decline in lactate
concentration that normally occurs when awake mice
transition into natural sleep or anesthesia.17–22 The
analysis showed that four mechanistically different
approaches to suppress glymphatic activity (pharma-
cology, genetic, mechanical or body position) all elimi-
nated the rapid decline in brain lactate concentration
when awake untreated mice fell asleep or were anesthe-
tized. Conversely, lactate concentration in cervical
lymph nodes exhibited the inverse pattern: Lactate
was highest in cervical lymph nodes harvested from
anesthetized control animals and all the manipulations
that suppressed glymphatic activity attenuated the rise
in lactate concentration induced by anesthesia. In con-
trast, neither state-dependent changes in brain activity
nor manipulations of the glymphatic system had any
effect on the lactate content of inguinal lymph nodes
in the same mice. Overall, the analysis provides direct
support for the notion that excess carbon in the form of
lactate can exit CNS via the glymphatic-lymphatic
transport system.7

Methods

Mice

A 1:1 ratio of male and female C57BL/6 mice, 8–12
weeks of age were used for all experiments, �20g.
Aquaporin-4 knockout (AQP4 KO, Aqp4�/�) mice on
C57BL/6 background were generated as described previ-
ously.23 All experiments were approved by the University
Committee on Animal Resources of the University of
Rochester and performed according to guidelines from
the National Institutes of Health and ARRIVE (items 5
to 7, 10 to 13). Light was on from 06:00 to 18:00 and off
from 18:00 to 06:00. Of note, we have previously docu-
mented that the mice housed in our vivarium are mostly
asleep during the light phase andmostly awake during the
dark phase.24 Electroencephalogram (EEG) and electro-
myogram (EMG) recordings were not collected in this
study, as in our prior studies16,25 we found that it was
not possible to implant the EEG electrodes concurrently
with a microdialysis probe without affecting the health of
the mice significantly.

Surgery

Mice randomized to the cisterna magna (CM) puncture
group were anesthetized with a mixture of ketamine

and xylazine (K–X; 100mg/kg ketamine, JHP
Pharmaceuticals, and 10mg/kg xylazine, Lloyd) admin-
istered intraperitoneally. The mice were then placed in
the prone position with the head slightly flexed. A 5mm
linear incision was made over the occipital-cervical
junction with skull and neck musculature reflected
inferiolaterally down to the CM. A horizontal cister-
notomy was made with a beveled 30-gauge needle so
that CSF could flow out freely from the CM puncture.
Suction of CSF coming from the CM was performed by
gently placing sterile tissue on top of the area. For sham
surgery, the mice underwent the same surgical proced-
ure with the only difference that the CM was kept
intact. Afterwards, the skin of the mice was sutured
with 5–0 nylon suture (Ethicon), thereafter local anes-
thetic bupivacaine (Hospira Worldwide) was applied on
the wound and 200 mL saline was given intraperitone-
ally. The mice returned to their cage on a heating pad
with mouse chow, hydrogel (98% sterile water), and
water available ad libitum until beginning of microdia-
lysis or acute slice experiments.

Acetazolamide treatment

For mice randomized to the acetazolamide treatment
group, 20mg/kg of acetazolamide (X-GEN pharma-
ceuticals) in 0.9% saline was delivered via the intraper-
itoneal route every 6 h and continued for the
subsequent 18 h (total of four injections) for slice
experiments in order to inhibit carbonic anhydrase
and thus CSF production. For microdialysis experi-
ments, treatment continued for 42 h (total of eight
injections).

Sleep deprivation

A group of control C57Bl/6 WT mice (not subjected to
acetazolamide or CM puncture) underwent sleep
deprivation during microdialysis. Sleep deprivation by
introduction to novel objects and mechanical stimula-
tion was started at the beginning of the light cycle and
continued for the following 4 h (6:00 to 10:00). Food
and water remained available throughout the sleep
deprivation period.

Immobility-defined sleep analysis

Mice were housed separately and acclimatized to their
home cage in a 12 h light:dark room isolated from
external stimuli. The mice were recorded for 24 h
using a camera that can image in light and dark condi-
tions (Axis 221 Network Camera) mounted above each
cage. Zeitgeber time (ZT) 1 began at the onset of the
dark phase, and the light phase started at ZT13. Video
recordings were analyzed using ANY-maze� (Version
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4.99, Stoelting Co) and immobility-defined sleep was
quantified by the number and duration of immobile
episodes during 1 h epochs in 24 h. Immobile episodes
were defined as lasting more than 40 s at 95% sensitiv-
ity detection as shown previously to accurately estimate
sleep in mice.26,27

Microdialysis

Biosensors are not particularly suitable for prolonged
use, therefore microdialysis was used. Surgical implant-
ation of the microdialysis guide cannula was performed
under ketamine–xylazine anesthesia (100mg/kg keta-
mine, JHP Pharmaceuticals, 10mg/kg xylazine, Lloyd,
i.p.) and aseptic conditions. The animals recovered for
two days before inserting the microdialysis probe.
Mice were anesthetized with 2% isoflurane mixed
with 1.0–2.0 L oxygen/min, and the probe (MD-2212
from BASi) was afterwards inserted into the cannula
at the following coordinates:þ 2.0mm anter-
ior;þ 0.25mm lateral; �1mm ventral. The probe was
equilibrated with artificial CSF containing the follow-
ing (in mM): 155 NaCl, 3.5 KCl, 1 CaCl2, 1 MgCl2 and
2 NaH2PO4, pH7.4, 300 mOsm, perfusion rate at
0.5 mL/min delivered by a Hamilton syringe controlled
by a Harvard microinjection pump. All microdialysates
were collected in a room with a light–dark cycle (12/12,
lights on at 6:00). Collection of samples started 3 h into
the light or dark cycle (21:00–24:00 and 9:00–12:00,
respectively). The collection time was 20min for each
sample. The recovery of lactate in aCSF at a perfusion
rate of 0.5 ml/min was 23.8� 1.3 % (N¼ 3). The brain
lactate concentration was calculated based on the
recovery at a perfusion rate of 0.5 ml/min.

Radioisotope clearance

Radiolabeled 14C-inulin (0.5 mCi: 6 kDa, PerkinElmer)
was injected into the left frontal cortex, as previously
published.16,28 A stainless steel guide cannula (Plastics
One) was implanted stereotactically into the left frontal
cortex of anesthetized mice (2% isoflurane) with the
coordinates of the cannula tip at 1.0mm anterior and
3.5mm lateral to bregma, and 1.5mm below the surface
of the brain. Animals were allowed to recover after
surgery, and the experiments performed 12–24 h after
the guide tube cannulation, as reported.16,28–30 In each
mouse, a small volume of a CSF (0.5 ml), containing
14C-inulin (0.5 mCi), was injected (33 GA cannula,
Plastics One) into the brain ISF over 5min. At the
end of the experiments (60min), the brain was removed
and prepared for radioactivity analysis. The brain was
solubilized in 0.5ml tissue solubilizer (PerkinElmer)
overnight followed by the addition of 5ml of scintilla-
tion mixture (Ultima Gold, PerkinElmer). The injectate

was treated in the same way. All samples were ana-
lyzed in a liquid scintillation counter (LS6500
Multipurpose Scintillation Counter, Beckman
Coulter). The percentage of 14C-inulin remaining in
the brain after microinjection was determined as per-
centage recovery in brain¼ 100� (Nb/Ni), where Nb
is the radioactivity remaining in the brain at the end
of the experiment and Ni is the radioactivity injected
into the brain ISF (i.e., the dpm of 14C-inulin).
Clearance is shown as the percentage change from
the 100% injected. Inulin was used, as it is metabol-
ically inert, polar molecules that are neither trans-
ported across the BBB nor retained by the
brain;9,16,28,31 hence, their clearance provides a meas-
ure of the ISF bulk flow. Of note, all the mice were
exposed to surgery when the injection cannula was
implanted. A surgical control group was therefore
not included in the inulin clearance analysis.

Lymph node dissection

Mice underwent cervical dislocation 80min into K–X
anesthesia (100mg/kg ketamine, 10mg/kg xylazine, I.P)
and superficial cervical and inguinal lymph nodes were
dissected. The thoracic cavity was opened and the heart
was stopped. An incision down the midline was per-
formed, the skin was then separated from the periton-
eum and peeled to the sides from the jawline to the tail.
The inguinal lymph nodes were obtained from the skin
flap of each side on the leg, located at the Y-shape
junction of blood vessels. The superficial cervical
lymph nodes were collected from above the subman-
dibular glands (submandibular lymph nodes) and
more laterally, by the parotid gland (parotid lymph
nodes).32–34 Curved forceps were used to hold the
lymph node while cleaning off fat and other tissue
using another curved forceps. The lymph nodes were
snap frozen in a tube on dry ice immediately after dis-
section. The nodes were then dissolved in 10 mL/mg
hypotonic lysis buffer containing the following (in
mM): 10 HEPES, pH7.5, 1.5 MgCl2, 10 KCl and
crushed with zirconium oxide beads (0.5mm diameter)
using a bullet blender (Next Advance) for 5min.

Sampling of brain tissue

Mice were awake or anesthetized with 100mg/kg keta-
mine and 10mg/kg xylazine; 15min later, the mice were
sacrificed by decapitation. Their heads were immedi-
ately snap frozen by immersion in �80 �C 100% iso-
pentane for 90 s with 100% ethanol in dry ice in an
outside chamber. The brains were afterwards dissected
in a �20 �C chamber of a Leica CM1900 cryostat and
embedded in Tissue-Plus Optimal Cutting Temperature
Compound (OCT). A Leica CM1900 cryostat was used
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to cut the brain in 20 mm thick coronal slices at 2.2mm
anterior from Bregma.

Protein determination

A colorimetric assay kit from Biorad (kit 500-0001) was
used to determine protein concentration in brain slices
using bovine serum albumin as standard, according to
the manufacturer instructions.

Lactate measurements

The dialysate, lymph nodes, or brain slice were mixed
with 30 mL reaction buffer (final concentrations): 3
U/mL horseradish peroxidase (Sigma-Aldrich), 1
U/mL lactate oxidase (Sigma-Aldrich), and 0.25mM
Amplex Red (Life Technology) in 1�phosphate-buf-
fered saline. Lactate measurements were done using a
530/25 excitation and a 590/35 emission filter set spec-
trophotometer Wallac Victor 2V Multi-label Counter,
Perkin Elmer. Lactate concentrations in samples were
then calculated using a standard curve for lactate.

Statistical analyses

Statistical analysis was performed using GraphPad
Prism 6.0e software. The data from microdialysis,
lymph nodes, and brain slices were evaluated using a
one-way ANOVA analysis of variance and exact
P-values were calculated using Dunnett’s post hoc
tests. A two-way ANOVA with Dunnett’s test was
used to compare microdialysis samples collected
during different times. For comparison of two groups,
an unpaired student t-test was used. For comparison of
sleep versus awake lactate concentrations in within the

same group, a paired t-test was used. Probability
values< 0.05 were deemed significant. All values are
expressed as mean� SEM.

Results

Brain lactate concentration declines during the
transition from dark to light phase

Mice underwent microdialysis in light and dark phase.
Previous studies have shown that sleep can be measured
with 94% accuracy using video-based analysis to deter-
mine sleep in mice, named immobility-defined
sleep.26,27 We confirmed that mice were predominantly
awake and asleep in the dark and light phase, respect-
ively (Figure 1(a) and (b)). Microdialysis was used
to collect ISF in freely behaving mice.24,35,36 The micro-
dialysis probe was inserted in the right cingulate cortex
two days prior to sample collections (Figure 2(a)).
The microdialysis probe was equilibrated with artificial
CSF for one hour prior to sample collection.22,24,35 The
dialysates were sampled every 20min for three hours
during the dark phase (21:00–24:00) and the light
phase (9:00–12:00). Video-based sleep analysis showed
that the mice spent 7.4 times more minutes immobile
during the light phase than the dark phase (P¼ 0.02),
suggesting that the mice are mainly awake in the dark
phase and inactive – consistent with sleep behavior – in
the light phase (Figure 1(a) and (b)). Earlier studies
have shown that mobility assessment of mice correlates
by 94% with the standard EEG/EMG approach.26,27

The lactate concentration in the brain remained
remarkably stable during the dark phase when the
mice are mostly awake and also during the light
phase when they are mostly asleep18,20,37 (P¼ 0.92

Figure 1. Immobility-defined sleep analysis in light and dark phase. (a) Time spent in immobility-defined sleep per hour over a 24-h

period. Data expressed as total minutes within 1 h epochs. (b) Mice spent significantly more time immobile during the light phase

compared to the dark phase coinciding with normal sleep behavior. Cumulative data for 12-h periods corresponding to dark (ZT1-12)

and light (ZT13-24) phases. Bar graphs represent mean� SEM. ZT; Zeitgeber time. N¼ 4. *P¼ 0.021, unpaired t-test.
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and P¼ 0.46 for dark and light phases, respectively,
Figure 2(b)). During the dark phase (awake), the lactate
concentration in the cortex was 1.645� 0.163mM,
when corrected for lactate recovery in the

microdialysates using a flow rate of 0.5 mL/min, similar
to earlier reports38 (see Methods section). When the
mice transitioned from the dark phase to light phase,
the relative concentration of lactate declined by
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Figure 2. Brain lactate during wakefulness, sleep and sleep-deprivation. (a) Schematic representation of microdialysis experiment.

Lactate concentration in cingulate cortex during wakefulness and sleep state in (b) control mice (c) treated with acetazolamide, (d)

AQP4 KO mice, (e) CM puncture, and (f) sham surgery. Values are shown as average of three collections per hour, N¼ 9 repre-

sentative sleep/wake cycles. ***P< 0.001; ns, not significant; two-way ANOVA. (g) Percentage average change in lactate concentration

of mouse cortex in the awake state (21:00–24.00) or sleep (9:00–12:00) deprived state compared to the awake state (red line). N¼ 16,

15, 7, 15, 21, and 3 for control sleep, acetazolamide treated, AQP4 KO, sham surgery, CM puncture and sleep deprivation, respectively.

**P< 0.01, ***P< 0.001, one-way ANOVA followed by Dunnett’s test compared to control. *P< 0.05, t-test for comparison of sham

surgery and CM puncture. Bar graphs represent mean� SEM.
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28.8� 3.8% in accordance with previous observations
(P< 0.0001, Figure 2 (b)).18–20

Suppression of the glymphatic system attenuates the
light–dark phase differences in lactate concentration

We next asked whether glymphatic fluid transport,
which is turned on when mice transition into either
sleep or anesthesia,16 is responsible for the decline in
brain lactate concentration. The effects of three mech-
anistically different manipulations that previously have
been shown to reduce glymphatic fluid transport were
assessed.28 We assessed the effect of (1) acetazolamide,
a carbonic anhydrase inhibitor that inhibits CSF pro-
duction, (2) deletion of the water channel aquaporin 4
(AQP4 knockout mice), (3) CM puncture, and (4) sham
surgery as a control for the CM puncture. None
of these manipulations changed the lactate concentra-
tion in the awake state: There was no difference in brain
lactate between the control and experimental groups in
the awake state (control, 1.645� 0.163mM; acetazola-
mide, 1.708� 0.260mM; AQP4 KO, 1.407� 0.227mM;
sham surgery, 1.403mM� 0.358mM and CM punc-
ture, 1.544� 0.131mM, P¼ 0.88). However, acetazola-
mide eliminated the drop in brain lactate from dark to
light phase as shown by the lack of statistical difference
in the lactate concentration in the dark and light phase
(P¼ 0.58, Figure 2(c)). Similarly, lactate failed to
decline during the transition from light to dark phase
in AQP4 knockout mice (P¼ 0.25, Figure 2(d)). CM
puncture eliminated glymphatic fluxes by reducing the
pressure differences that drive CSF exchange with ISF.
CM puncture diminished the decline in lactate that
occurred upon the transition from dark to light phase
(P¼ 0.17, Figure 2(e)). In contrast, animals exposed to
sham surgery (opening of skin and muscles in the neck)
exhibited significantly higher brain lactate during the
dark phase (P¼ 0.01) than light phase and did not
differ significantly from non-surgical controls
(P¼ 0.99), albeit a trend toward a small decrease was
noted (Figure 2(b) and (f)).

Next, we compared the average difference in lactate
between dark and light phase across the five groups.
Thus, this comparison assessed whether manipulations
that suppress glymphatic function reduced the gap in
lactate between dark and light phase observed in
untreated control mice (Figure 2(g)). Acetazolamide
treatment significantly dampened the decline in lactate
from dark to light phase when compared to control
(11.76� 4.2% reduction, P¼ 0.01 compared to the
dark phase, P¼ 0.008 compared to control). Mice
lacking AQP4 exhibited a trend toward a decline in
lactate; however, it was not significant (6.2� 4.9%
reduction, P¼ 0.26 compared to the dark phase,
P¼ 0.005 compared to control). CM puncture also

significantly lowered the dark to light phase differences
compared to sham surgery (12.1� 5.3% reduction,
P¼ 0.03 compared to the dark phase, P¼ 0.035 com-
pared to sham, Figure 2(g)). On the contrary, animals
exposed to sham surgery (26.6� 3.1% reduction,
P< 0.001 compared to the dark phase) did, as expected,
not differ from non-surgical controls (28.8� 3.8%,
P¼ 0.65, Figure 2(g)). Thus, only the two control
groups (control and sham surgery) experienced a sig-
nificant drop in lactate when they transitioned from
dark to light phase, suggesting that glymphatic clearance
plays an important role in lactate clearance. Similar to
previous reports, we confirmed that brain lactate
increases significantly in mice undergoing sleep depriv-
ation (23.6� 0.1%, P< 0.0001, Figure 2(g)).20,39,40

To assess how potently acetazolamide, AQP4
deletion, CM puncture, and body position reduced
glymphatic efflux, we evaluated clearance of the inert
compound inulin (6 KDa) that within the 30min
experiment is not transported across the BBB, and
only exits the brain via convective glymphatic trans-
port.16,29 As previously published, acetazolamide treat-
ment, AQP4 KO, CM puncture significantly reduced
brain clearance of inulin28 (Figure 3(a)). The analysis
also showed that positioning the body on a 45 � slope
with the head downwards reduced inulin clearance
(P¼ 0.02, Figure 3(a)). Thus, suppression of glympha-
tic clearance correlated with a reduced rate of lactate
clearance. Of note, a control sham group was not
included in these experiments, since the radiolabeled
glymphatic clearance assay includes surgical implant-
ation of the injection cannula.9

Overall, these experiments show that acetazolamide,
AQP4 deletion, and CM puncture all suppressed glym-
phatic inulin clearance and the drop in lactate concen-
tration that occurred in control mice during the
transition from dark to light phase (Figures 2(g)
and 3(a)).

Manipulations of the glymphatic system eliminate
the decline in cerebral lactate concentration in
response to anesthesia

In addition to natural sleep, some injectable anesthetics,
such as chloral hydrate, thiopental and phenobarbitone,
reduce brain lactate. Conversely, inhalable anesthetics
tend to increase brain lactate, as is the case for sevoflur-
ane, halothane, and particularly isoflurane.16,21,22 The
effects of isoflurane on lactate are known to involve a
direct effect on mitochondria including partial depolar-
ization of the mitochondrial membrane and are not a
general effect of anesthesia.41,42 To critically test
whether glymphatic fluid transport contributes to the
anesthesia-induced decline in lactate, we collected micro-
dialysis samples in the cingulate cortex before, during,
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and following administration of ketamine–xylazine (K–
X) anesthesia. The rate of decline in lactate was calcu-
lated as the slope of the linear regression between three
points: (1) Awake state for 20min immediately prior to
K–X administration, and (2) 20-40min and (3) 40-60min
after K–X administration (Figure 3(b)). The analysis
showed that the reduction in lactate concentration was
significantly slower in mice treated with acetazolamide
(P¼ 0.04), AQP4 KO mice (P¼ 0.045), CM puncture
(P¼ 0.02) compared with untreated controls (Figure
3(c)). We also took advantage of the observations that
body posture can affect glymphatic activity.15,43 We
found that mice positioned with their body at a 45 �

angle with the nose down also exhibited significantly
less of a reduction of brain lactate compared to mice
resting horizontally in the prone position (P¼ 0.02,
Figure 3(c)). Sham surgery did not significantly slow
the decline in lactate concentration compared to the
untreated control group (P¼ 0.43).

These observations are consistent with the conclu-
sion that lactate concentration in cortex falls when
awake mice transition into the unconscious state of
anesthesia (Figure 3), because the glymphatic system
is activated and extracellular lactate is flushed out of
the cortex by the glymphatic-lymphatic pathway.16

Lactate in cervical lymph nodes is inversely
correlated with lactate in cortex

CSF exits from the brain via the olfactory mucosa
through the cribriform plate, meningeal lymph vessels
as well as cranial and spinal nerves from where it is
eventually collected in cervical lymphatic vessels and
returns to the blood.13,15,44 To assess whether lactate
produced in the brain is drained to the cervical lymph
vessels, we harvested cervical lymph nodes from mice
decapitated awake and mice anesthetized with K–X.
Due to the invasive character of these experiments, nat-
ural sleep could not be included in the analysis. The
superficial cervical lymph nodes (submandibular and
parotid lymph nodes) were dissected, as well as inguinal
lymph nodes (Figure 4(a)). The concentration of lactate
in the lymph nodes from controls, acetazolamide,
AQP4 KO, CM puncture, sham surgery for CM
puncture, and head down body position groups were
quantified 80min after they received K–X anesthesia.
Mice in all the experimental groups were placed in
prone position laying flat after administration of
K–X, except for mice included in the head down
body position groups, which were placed in the prone
position on a 45 � downward slope with the nose down.
Lactate concentration in the harvested lymph nodes
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xylazine anesthesia. N¼ 11, 6, 3, 5, 7, and 6 for control, acetazolamide (Ace), AQP4 KO, head 45 � angle downwards (head down),

sham surgery, and CM puncture, respectively. **P< 0.01, *P< 0.05; ns, not significant; one-way ANOVA followed by Dunnett’s test

compared to control. Bar graphs represent mean� SEM.
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was quantified. The analysis showed that the control
groups (untreated and sham surgery) exhibited signifi-
cantly higher lactate in the cervical lymph nodes than
mice treated with acetazolamide, AQP4 KO or the mice
positioned head down (P¼ 0.04, P¼ 0.02, P¼ 0.01,
respectively, Figure 4(b)). The sham surgery did not
affect the lactate concentration compared to control
(P¼ 0.99). However, the CM puncture group had a
lower lactate content than the sham surgery group
(P¼ 0.03). Thus, lactate concentration in cervical
lymph nodes was higher while brain interstitial lactate
was lower during the transition from wake to K–X
anesthesia when the glymphatic system was not sup-
pressed (Figures 3 and 4). In contrast, the lactate con-
centration in control inguinal lymph nodes was
significantly lower than control cervical lymph nodes
(P< 0.0001) and did, as expected, not change in
response to manipulations of the glymphatic system
(P¼ 0.47, Figure 4(c)).

Anesthesia-induced reduction in brain lactate
concentration is also sensitive to glymphatic
manipulations

Lactate is transported across the plasma membrane by
the monocarboxylate transporters (MCTs) by a driving

force of protons and lactate concentration, and trans-
port of lactate across cell membranes is fast; however,
differences in intra- and extra-cellular concentrations
have been reported.45–47 To critically assess whether the
microdialysis samples data were representative for brain
lactate concentrations, we also analyzed lactate concen-
trations in whole brain tissue samples from awake mice
and mice who were anesthetized with K–X for 20min in
combination with the manipulations of glymphatic func-
tion. The mice in these experiments were decapitated and
the whole heads were frozen by immersion in �80 �C
isopentane, which freezes the brain in �10 s similar to
immersion in liquid nitrogen but halts lactate develop-
ment faster than liquid nitrogen.48,49 While this approach
does not instantaneously stop lactate production, lactate
generated after decapitation is expected to be similar
across all groups. Brains were extracted and sectioned
in a �20 �C chamber for determination of lactate. The
analysis showed that acetazolamide, AQP4 KO or CM
puncture did not alter brain lactate in awake mice con-
sistent with the notion that glymphatic clearance is low
during wakefulness16 (P¼ 0.39, Figure 5(a)). However,
the brain lactate concentration in acetazolamide and
AQP4 KO mice were significantly higher during keta-
mine–xylazine anesthesia compared to control mice
(P¼ 0.0008, P¼ 0.01, respectively) and CM puncture
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was significantly higher than sham surgery mice
(P< 0.03). Sham surgery did not differ from control
(P¼ 0.67, Figure 5(b)). These observations add further
support to the notion that brain lactate concentration
decreases in response to anesthesia as a consequence of
increased glymphatic washout of lactate.

Discussion

Past studies have documented that brain lactate con-
centration follows neural activity and that lactate
increases in response to somatosensory stimula-
tion.50–53 A substantial body of literature further
shows that cerebral lactate concentration is increased

during wakefulness, perhaps partially mediated by
break down of astrocytic glycogen as a result of nora-
drenergic stimulation,54 and declines when an awake
mouse or a rat transition into natural sleep or anesthe-
sia.17–22 The state-dependent changes in lactate closely
follow EEG activity and lactate is considered the best
metabolic biomarker of the sleep–wake cycle, together
with norepinephrine and glycogen.19,20,55–57 However,
no studies have, to our knowledge, addressed why lac-
tate is so robustly regulated by the sleep–wake cycle.
The data presented here suggest that the glymphatic
system, which is activated by natural sleep or anesthe-
sia, literally flushes excess lactate out of the brain
resulting in transient increases in lactate in nearby cer-
vical, but not distal inguinal, lymph nodes (Figure 6).
Earlier studies have documented that glymphatic trans-
port of both endogenous and exogenous proteins and
peptides (4–100 kDa) is driven by convective exchange
of CSF-ISF.9,10,28 This study extents these observations
to include the small metabolite lactate (90 Da). Several
manipulations, including acetazolamide, CM puncture,
aquaporin 4 (AQP4) deletion, and body position which
all reduce glymphatic clearance were employed.28,58

Acetazolamide inhibits carbonic anhydrase and thereby
CSF production in the choroid plexus, CM puncture
eliminates the small pressure gradients that provide the
hydraulic force that drives the convective exchange of
CSF with ISF,28 whereas deletion of AQP4 water chan-
nels reduces intraparenchymal convective fluid fluxes.9

All of these manipulations reduced or eliminated the
decline in lactate concentration that normally takes
place when mice fall asleep (transition from dark to
light phase) or are anesthetized with K–X. In fact, a
simple manipulation – placing the mice’s body in a 45�
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angle with their nose down43 – inhibits glymphatic
clearance, as well as the drop in lactate that occurs in
response to K–X anesthesia (Figures 3(b) and 5(b)).
Thus, our analyses show that the activation of glym-
phatic clearance that occurs when awake mice transi-
tioning into sleep or anesthesia correlates with lactate
clearance, and hence support the conclusion that the
glymphatic system contributes to the rapid reduction
of brain lactate. It is however clear, that both glucose
and oxygen consumption are lowered during sleep, in
part due to reduced adrenergic activity.59–61 The rela-
tion between metabolism and sleep is complex, and may
also involve the recently appreciated role of lactate as a
signaling molecule.61,62 Recent work shows that lactate
released from astrocytes increases locus coeruleus (LC)
activity and thereby increases noradrenergic drive. To
overcome issues related to metabolic differences in sleep
and wakefulness, we used three mechanistically differ-
ent manipulations to reduce glymphatic activity during
the transition from awake to sleep and four manipula-
tions during the transition from wakefulness to anes-
thesia. All sets of data presented in this report
supported the notion that glymphatic clearance plays
a key role in state-dependent changes in brain lactate
concentration.

During physiological conditions, O2 and glucose are
normally consumed in a ratio of 5.5:1, suggesting that
9% of glucose is consumed anaerobically in CNS.1–5

During a period of activation, the O2:glucose ratio
declines even further4,63 leading to the concept that
increased neural activity is, at least in part, supported
by less efficient ATP production by glycolysis and that
brain activity therefore is linked to generation of sur-
plus lactate. However, it is unclear how the excess lac-
tate leaves the brain. The expression of MCTs in brain
endothelial cells is high and lactate is able to permeate
the blood–brain barrier, most likely by passing through
MCTs on endothelial cells.64 Nonetheless, Madsen
et al.5,65 found that in humans, the arterio-venous dif-
ference in lactate during activation is minimal and
therefore it is unlikely that lactate is exported via the
general circulation. A later study monitored arterio-
venous lactate differences, as well as brain glucose, lac-
tate, and glycogen after sensory stimulation. The
authors concluded that excess glucose consumption
during sensory stimulation is not accounted for by lac-
tate efflux to blood or from accumulation within brain
tissue.3 A follow-up analysis based on systemic admin-
istration of radiolabeled glucose showed that roughly
half of lactate produced during cortical spreading
depression is exported to the blood.66 It is uncertain
whether this observation applies to lactate export
across the BBB during physiological stimulation or
transitions between wake and sleep, since cortical
spreading depression is a pathological event, which

for example involve opening of the blood–brain bar-
rier.67,68 More recently, it was documented that lactate
diffuses brain wide and it was hypothesized, based on
the distribution of a tracer (Evans blue conjugated with
albumin, �67 KDa), that the perivascular space may
constitute an efflux pathway for lactate.6,7 Our obser-
vation provides direct support for this hypothesis. In
addition, glymphatic bulk flow within the tissue will
transport lactate from the metabolic active neuropil
into perivascular spaces and thereby facilitate BBB
efflux of lactate. Of note, although the primary source
of lactate in the brain is glucose or glycogen,69,70 lactate
can also be generated from other sources. For example,
astrocytes engage in glutamate metabolism via the
Krebs cycle that can result in lactate production.71 In
addition, it is possible that some of the lactate is derived
from intermediate metabolites of the Krebs cycle via
pyruvate recycling and the alpha a-ketoglutarate gluta-
mate-glutamine pathway in astrocytes, as shown in cul-
tured cells.72–75 Independently of the source of lactate,
our data point to glymphatic transport as an important
path for lactate clearance.

An interesting consequence of state-dependent
changes in brain lactate is that it will alter the lac-
tate/pyruvate ratio, and thereby the NADH/NAD
redox potential.76,77 The glymphatic-lymphatic wash-
out of lactate during sleep, and the lack of lactate
clearance during wakefulness is therefore expected to
result in an increase of redox state during wakeful-
ness relative to sleep. A recent study reported that
simply increasing extracellular lactate or NADH
induced a pattern of immediate early gene expression
that was reminiscent of those induced by long-term
potentiation (LTP), although physiological levels of
brain lactate might not reach 10–20mM lactate as
used in this study.78 Other studies have in the past
noted similar changes in gene expression mediated by
LTP versus wakefulness.79 Thus, it is possible that
the suppression of glymphatic lactate clearance
during wakefulness contributes to the characteristic
expression of immediate early genes and thereby to
memory consolidation.
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