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Abstract

We consider the problem of constructing a shortest
Euclidean 2-connected Steiner network (SMN) for a
set of terminals. This problem has natural applica-
tions in the design of survivable communication net-
works. A SMN decomposes into components that
are full Steiner trees. Winter and Zachariasen proved
that all cycles in SMNs with Steiner points must have
two pairs of consecutive terminals of degree 2. We
use this result and the notion of reduced block-bridge
trees of Luebke to show that no component in a SMN
spans more than approximately one-third of the ter-
minals. Furthermore, we show that no component
spans more than two terminals on the boundary of
the convex hull of the terminals; such two terminals
must in addition be consecutive on the boundary of
this convex hull. Algorithmic implications of these
results are discussed.
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1 Introduction

The Euclidean Steiner tree problem asks for a short-
est possible network spanning a set Z of n terminals
in the plane. The solution is a tree, referred to as a
Steiner minimal tree (SMT). Apart from the termi-
nals, SMTs may contain additional, so-called Steiner
points, where exactly three edges meet at 120o angles.
SMTs are unions of full Steiner trees spanning subsets
of terminals all having degree 1.

When the objective is to design low cost sur-
vivable networks, the problem of constructing Eu-
clidean 2-connected Steiner minimum networks in
the plane (SMNs) arises. Since a 2-edge-connected
minimum-length network necessarily is 2-vertex-
connected when the distance function is a met-
ric (Frederickson & Ja’Ja 1982), we use the shorthand
2-connected in the following.

SMNs have been studied by Hsu and Hu (1998),
Luebke and Provan (2000), Luebke (2002) and Winter
and Zachariasen (2005). Luebke and Provan (2000)
proved that the problem is NP-hard and gave a num-
ber of structural properties of SMNs. Luebke (2002)
introduced the notion of (reduced) block-bridge trees
that will play an essential role in this paper. Win-
ter and Zachariasen (2005) proved that all cycles in
SMNs with Steiner points must have pairs of consec-
utive terminals of degree 2.
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The paper is organized as follows. In Section 2
we formally define the problem and outline some ba-
sic properties of SMNs. In Section 3 we discuss re-
duced block-bridge trees. In Section 4 we show how
the properties of the reduced block-bridge trees for
SMNs can be used to bound the size of full Steiner
trees. Properties of SMNs related to the boundaries
of convex hulls of terminals are discussed in Section 5.
Algorithmic implications of these results are discussed
in Section 6. Concluding remarks are given in Sec-
tion 7.

2 Basic Properties

Let Z be a set of n terminals in the Euclidean plane.
The 2-connected Euclidean Steiner network problem is
to find a minimum length 2-connected network N(Z)
spanning Z and possibly additional, so called Steiner
points. If Z is obvious from the context, we denote
N(Z) by N .

Figure 1: SMN with 2 non-trivial FSTs of 3 terminals
each.

Hsu and Hu (1998), Luebke and Provan (2000) and
Luebke (2002) proved several properties of SMNs. In
particular, all Steiner points are incident with three
edges meeting at 120◦ angles (as for the Euclidean
Steiner tree problem in the plane). Furthermore, no
cycle consists entirely of Steiner points. As a conse-
quence, SMNs are unions of full Steiner trees (FSTs),
in which all terminals are leaves and all Steiner points
are interior vertices (Figure 1). This important result
implies that GeoSteiner, the 2-phase exact algorithm
for the determination of SMTs in the plane (Warme,
Winter & Zachariasen 2000) can be adapted to find
SMNs. GeoSteiner in its first phase generates a su-
perset of FSTs of a SMT. Powerful geometric tests
based on non-trivial properties of SMTs permit to
keep this superset very small. In the second phase,
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Figure 2: Reduced block-bridge tree construction.

GeoSteiner uses an elaborate branch-and-cut ap-
proach to identify FSTs of the superset whose con-
catenation yields a SMT. Problem instances with up
to 10000 terminals can be solved within reasonable
amount of time.

The same approach can be used to find SMNs if the
connectivity constraints in the integer programming
model for the concatenation phase are appropriately
modified. While this modification is straightforward,
the real problem occurs in the first phase where FSTs
are generated. Some of the very powerful geometric
test that work for the SMTs, do not apply in the 2-
connected case.

The notion of a chord-path was introduced
in (Winter & Zachariasen 2005). Let G denote an
undirected graph and let C be a cycle in G. A chord-
path between two distinct vertices u and v on C is
a path between u and v in G that shares no interior
vertices with C. We proved the following structural
results.

Theorem 1 Any chord-path in a SMN must have a
pair of consecutive terminals of degree 2 in its inte-
rior.

Corollary 1 Suppose that a SMN has vertices of de-
gree 3. Each of its cycles has two pairs of consecutive
terminals of degree 2 separated by vertices of degree 3.

3 Reduced Block-Bridge Trees

Let H be an undirected connected graph. The block-
bridge tree HB of H is a tree obtained by contracting
each block (i.e., each 2-connected component) to a
vertex (Figures 2a and 2b). The reduced block-bridge
tree HR of a connected graph H , is obtained from the
block-bridge tree HB of H by replacing each simple
path (with interior vertices of degree two) by an edge
(Figure 2c). Luebke (2002) introduced reduced block-
bridge trees and gave a proof of Theorem 2 in her
Ph.D. thesis; here we present a modified and shorter
version of the proof.

Given a SMN N of Z and one of its FSTs F , we
let N \F denote the graph obtained by deleting from
N all interior vertices and all edges of F .

Lemma 1 Let F be an FST in an SMN N of Z.
H = N \ F is connected.

Proof. Suppose that H is disconnected. Let u and
v be two vertices of H , each in a different component
of H . Since N is 2-connected, it contains two disjoint
paths P and P ′ between u and v. Let C denote the
cycle created by P and P ′. Both P and P ′ must go
through F . Since F is a tree with no terminals in
its interior, C has a terminal-free chord-path. This
contradicts Theorem 1.

In the remainder of this paper, we let HB denote
the block-bridge tree of H = N \ F , and HR the
reduced block bridge tree of H .

Consider an edge e of an arbitrary tree T . When
e is removed, T breaks down into 2 subtrees, T e

L and
T e

R. Let Se
L and Se

R denote the leaves in T e
L and T e

R,
respectively. The pair of sets Se = (Se

L, Se
R) is re-

ferred to as a split of T by the edge e. It is clear that
splits generated by different edges of the same tree are
different. It is also well-known that two trees with the
same set of leaves (and with no vertices of degree 2)
are isomorphic if and only if their edges generate the
same splits (Semple & Steel 2003).

Lemma 2 Let F be an FST in a SMN N . There is
a one-to-one correspondence between the terminals of
F and the leaves of HR, such that each terminal in F
is contracted to a distinct leaf in HR.

Proof. First we prove the result for the block-bridge
tree HB and then we extend the result to the reduced
block-bridge tree HR.

Suppose that two distinct terminals t1 and t2 of F
are contracted to the same vertex v of HB. Terminals
t1 and t2 are therefore on a cycle C in H (Figure 3a).
The path connecting t1 and t2 in F is a terminal-free
chord-path of C, contradicting Theorem 1. Thus at
most one terminal of F is contracted to a vertex in
HB.

Suppose that v is a leaf in HB, and no terminal of
F is contracted to it (Figure 3b). This is only possible
if there is a bridge in N , contradicting the assumption
that N is 2-connected.

Suppose that v is a non-leaf of HB and that a ter-
minal t of F is contracted to v. HB is a tree. There
are therefore two paths in HB, both starting at v
but otherwise disjoint, one through edge f1 and the
other through edge f2, ending in leaves v1 and v2 (Fig-
ure 3c). Consequently, there must be terminals t1 and
t2 in H contracted to v1 and v2 respectively. Since
the part of H contracted to v in HB is 2-connected
(with special case where the contracted part consists
of t alone), there is a path in H from t1 to t2 going
through t. Since F is also a tree, there must be a
path in F between t1 and t2. The cycle composed
by these two paths has a terminal-free chord-path, a
contradiction.

When going from HB to HR, every leaf is pre-
served. All such vertices contain exactly one terminal
from F , finishing the proof of the lemma.

Theorem 2 Let F be an FST in a SMN N . F and
HR are isomorphic.

Proof. Let NR denote the union of F and HR (where
the terminals in F have been identified with the cor-
responding leaves HR). Consider an arbitrary edge
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Figure 3: Impossible contractions.

e ∈ F . We will first show that NR \ e has a unique
bridge f located in HR.

Let u and v denote the end-vertices of e. Assume
that there are 2 vertex-disjoint paths between u and
v in NR \ e (Figure 4a). Then there exists a cycle in
N with e being its terminal-free chord-path, a con-
tradiction.

Assume next that there are 2 edge-disjoint (but
not vertex-disjoint) paths Ruv and R′

uv between u
and v in HR sharing some vertex z (Figure 4b). The
vertex z cannot correspond to a single vertex in H ;
its degree in H and hence in N would then be at least
4, a contradiction. The vertex z must therefore cor-
responds to a contracted block B of H . Since Ruv is
a path in HR, there is a corresponding path Puv in
N \e. Suppose that Puv enters block B through a ver-
tex u1 and leaves B through a vertex v1. If u1 = v1,
then there exists a path P ′

uv in N \e corresponding to
R′

uv which is vertex-disjoint with Puv in B (otherwise
u1 = v1 would have degree 4 in N \ e). If u1 6= v1,
let C be a cycle in B through the part of Puv be-
tween u1 and v1. If P ′

uv avoids C, then Puv and P ′

uv
are vertex-disjoint in B. Assume that P ′

uv enters C
through a vertex u′

1
and leaves C through a vertex

v′
1
. Since these vertices must have degrees less than

4, u1, v1, u
′

1
and v′

1
must be mutually different. No

matter in what order they appear on C, there always
will exist 2 paths between u and v in N \ e that are
vertex-disjoint in B (follow Puv and P ′

uv from u un-
til reaching C at u1 and u′

1
, reach v1 and v′

1
through

disjoint parts of C and continue toward v). The edge-
disjoint paths Ruv and R′

uv can share several vertices.
We argued so far that there are paths Puv and P ′

uv in
N \e that are vertex-disjoint in a block corresponding
to a shared vertex. Hence, there exist paths Puv and
P ′

uv that are vertex-disjoint in all these blocks. Such
Puv and P ′

uv will form a cycle with e as its chord-path,
a contradiction.

We have shown so far that NR \e contains at least
one bridge f . Since F and NR are trees sharing their
leaves, f must be located in HR. We will now show
that f is unique. NR \ {e, f} is disconnected. As a
consequence, the split generated by e in F must be
the same as the split generated by f in HR. Since no
pair of splits in a tree (with no vertices of degree 2)
is the same (Semple & Steel 2003), it follows that f
is unique.

It can be shown in a similar manner that for any
f ′ ∈ HR, the graph HR \ f ′ contains a unique bridge
e′ located in F .

We proved that there is a unique perfect matching
between edges of F and edges of HR, such that for
every pair of matched edges e ∈ F and f ∈ HR, e
is a bridge in NR \ f if and only if f is a bridge in
NR \ e. Since F and HR share their leaves, the splits
generated by the matched edges are the same. This
implies that F and HR are isomorphic.

4 Size of Full Steiner Trees

In this section we use reduced block-bridge trees to
obtain an upper bound on the number of terminals in
FSTs of a SMN. Such a bound can be used to make
the generation phase of the exact algorithm more ef-
ficient. It also influences the concatenation phase as
the number of FSTs becomes smaller.

Theorem 3 A SMN N spanning n terminals has no
FST spanning more than ⌊n/3⌋+ 1 terminals.

Proof. Let F denote an FST of N . Let m denote the
number of terminals in F . Let H , HR and NR be as
defined in Section 3.

Let e ∈ F . By Lemma 2, there is a unique edge
f ∈ HR such that e is a bridge in NR \ f and f is a
bridge in NR \ e. Furthermore, NR \ {e, f} consists of
two 2-connected components.

Let Hf denote the subgraph of H contracted to
the edge f ∈ HR. Hf can be viewed as a se-
quence of 2-connected components. Suppose that
Hf has no interior 2-connected components or ter-
minals in this sequence. Hence, f corresponds to an
edge in H . The removal of e and f from HR leaves
two 2-connected components. But this implies that
the removal of e and f from N also leaves two 2-
connected components, contradicting the fact that
deleting any pair of edges of an SMN will leave a
bridge in one of the resulting components (Monma,
Munson & Pulleyblank 1990).

Suppose next Hf has an interior 2-connected com-
ponent and that it contains no terminal. Then such
a component can be replaced in H by a single edge.
The new graph remains 2-connected and due to the
triangle inequality it is shorter, a contradiction.

It follows that Hf must contain at least one ter-
minal in its interior. F has 2m − 3 edges. Since F
and HR are isomorphic, HR also has 2m − 3 edges.
Each of these edges corresponds to a subgraph of H
containing at least one terminal. As a consequence,
N contains at least 3m− 3 terminals (m of them be-
longing to F ). Hence, n ≥ 3m − 3 and it follows
that ⌊n/3⌋ + 1 is an upper bound on the number of
terminals in any FST of N .

5 Border Terminals

Let CH(Z) denote the convex hull of Z. A terminal
is called a border terminal if it is on the boundary
of CH(Z). Otherwise it is called an inner terminal.
Two border terminals are said to be neighbors if they
share a boundary edge of CH(Z).

Lemma 3 If N contains edge-disjoint paths P1, P2

and P3 beginning in a degree 3 vertex v and ending
in border terminals z1, z2 and z3, then one of these
paths contains a chord-path.
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Figure 4: Isomorphism between F and HR.

Proof. Since N is 2-connected, there exists a path
P23 connecting z2 and z3, but otherwise disjoint from
P2 and P3. P23 either avoids P1 or hits P1 at a some
vertex.

If P23 avoids P1 (Figure 5a), then there must be
a path P12 from z1 to z2 that is disjoint from P1 and
P2. If P12 avoids P3 then P2 is a chord-path for the
cycle formed by P12, P23, P3 and P1. If P12 hits P3,
let w be the intersection that is closest to v. The
portion of P3 between v and w is a chord-path for the
cycle formed by P12, P2 and P1. (Note that v 6= w;
otherwise N would have a vertex of degree 4.)

If P23 hits P1 (Figure 5b), let u be the intersection
that is closest to v. The portion of P1 between u and
v is a chord-path for the cycle formed by P23, P3 and
P2.

Lemma 4 If N contains a path P between two border
terminals, and there is at least one terminal on each
side of P , then P contains a chord-path.

Proof. Let z1 and z2 be two terminals on opposite
sides of P . Since N is 2-connected, there exist two
disjoint paths P12 and P ′

12
from z1 to z2. Let u and

u′ denote the intersections of P12 and P ′

12
with P ;

these intersections can always be selected such that
the part of P1 between u and u′ is disjoint from both
P12 and P ′

12
. This portion of P is a chord-path for

the cycle formed by P12 and P ′

12
.

Theorem 4 No FST F of N spans more than 2 bor-
der terminals. Furthermore, if F spans 2 border ter-
minals, they must be neighbors.

Proof. The theorem is trivial if n ≤ 3, so let n ≥ 4
(where n is the number of terminals spanned by N).
Suppose that F spans 3 border terminals z1, z2, z3.
Let v denote the Steiner point of F where the paths
P1, P2 and P3 from z1, z2 and z3 all meet. None of
these paths contains a terminal and therefore cannot
contain a chord-path. This contradicts Lemma 3.

Assume therefore that F spans 2 border terminals
z1 and z2 and that they are not neighbors. Let P de-
note the unique path between z1 and z2 in F . Since
z1 and z2 are not neighbors, then there are two other
border terminals separated by P . By Lemma 4, P
contains a chord-path. In particular, it contains 2
consecutive terminals. But this contradicts the as-
sumption that P is in the FST F .

Let F be an FST in N(Z). Let zF denote the
number of terminals in F . Let bF denote the number
of border terminals in F and let iF denote the number
of inner terminals in F . Finally, let i be the number
of terminals in the interior of CH(Z).

Theorem 5 bF + 2iF − i ≤ 2.

Proof. If zF = 2, then by a straightforward anal-
ysis of three cases (bF = 0, 1, 2), the theorem holds.

We therefore assume that zF ≥ 3. By Theorem 4,
bF ≤ 2 and therefore iF ≥ 1. Let z1, z2, ..., ziF

denote
the inner terminals of F . Let F1, F2, ..., FiF

denote
FSTs, other than F , containing z1, z2, ..., ziF

, respec-
tively. These FSTs must be pairwise disjoint and they
each share exactly one terminal with F . Otherwise N
would contain a cycle with 2 terminals, contradicting
Corollary 1.

Let G denote the union of F, F1, F2, ..., FiF
. G is

a tree. The number of terminals spanned by G is at
least 2iF . The number of border terminals spanned
by G is therefore at least bF + 2iF − i. Suppose that
G has 3 border terminals z1, z2 and z3. Since G is a
tree, there must be a vertex v in G where otherwise
disjoint paths from z1, z2 and z3 meet. By Lemma 3,
one of these paths contains a chord-path in N . In
particular, such a path must contain 2 consecutive
interior terminals of degree 2. But this contradicts
the manner in which G was constructed. The claim
follows.

Theorem 6 zF ≤ 2 + ⌊i/2⌋

Proof. Since zF = iF +bF , Theorem 5 gives zF ≤ 1+
bF /2+i/2. By Theorem 4, bF ≤ 2 and zF ≤ 2+⌊i/2⌋.

Corollary 2 SMNs for problem instances with all
but at most one terminal on the boundary of CH(Z)
contain no Steiner points.

6 Pruning Applications

Equilateral points are defined recursively as follows.
A terminal t is an equilateral point based on t. Let a
be an equilateral point based on a subset of terminals
Za and let b be an equilateral point based on a subset
of terminals Zb. If Za ∩ Zb = ∅, then the equilateral
point eab based on Za ∪ Zb is defined as the third
corner of the equilateral triangle with ab as one of its
sides and with eab to the right of the line through a
and b when looking from a (Figure 6a). Note that
eab 6= eba.

Equilateral points are building blocks of FSTs dur-
ing the generation part of the two-phase algorithm for
SMTs and SMNs. Every FST F spanning a subset
of terminals Ze and a closing terminal t, t 6∈ Ze, is
completely determined by an appropriate equilateral
point e based on Ze. Furthermore, the length of F
is equal to the length of the Simpson line connecting
e with t. The locations of the Steiner point adjacent
to t is the intersections of the Simpson line with the
circle circumscribing the equilateral triangle defining
e (Figure 6b). The locations of other Steiner points
is determined recursively with the earlier determined
Steiner points acting as closing terminals.

It follows that FSTs can be generated by the enu-
meration of all equilateral points closed by appropri-
ate terminals. Many of these equilateral points can be
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Figure 5: Paths to three border terminals.

pruned away as they violate 120o angle requirement
between edges meeting at Steiner points or they lead
to long FSTs that cannot appear in an optimal solu-
tion. The reader is referred to (Warme et al. 2000)
for a more detailed discussion of equilateral points
and their role in the construction of FSTs.

The upper bound on the number of terminals in
FSTs of an SMN obtained in Section 5 can be used to
prune many other equilateral points. Let a and b de-
note two equilateral points based on disjoint subsets
of terminals Za and Zb. Let e be an equilateral point
based on Ze = Za ∪ Zb. Let bZe

and iZe
denote the

number of border terminals and interior terminals, re-
spectively, that e is based on. It follows immediately
from Theorem 5 that e can be pruned away if bZe

> 2.
Furthermore, if bZa

= 1 and bZb
= 1, then e needs to

be constructed only if the two border terminals are
neighbors on CH(Z).

Lemma 5 If bZe
= 2 and iZe

> i/2− 1 then eab can
be pruned away.

Proof. Any FST F involving e must include a termi-
nal t not in Ze. The terminal t cannot be a border ter-
minal since Ze already contains two border terminals.
Hence, t must be an inner terminal, and iF ≥ iZe

+1.
Then

bF + 2iF − i ≥ 2 + 2iZe
+ 2 − i > 2 + i − i = 2

where we use the assumption 2iZe
+ 2 > i in the

second inequality — contradicting Theorem 5.

Lemma 6 If bZe
+2iZe

−i > 1 then eab can be pruned
away.

Proof. Closing such equilateral point e by a terminal
(border or inner terminal) will cause the inequality of
Theorem 5 to be violated.

The above pruning tests are applied to equilateral
points. Each such equilateral point can be closed by
any terminal t ∈ Z \ Ze. Such closures may permit
pruning away some of the FSTs (even though the fi-
nal equilateral point could not be pruned away). This
is for example the case if t is a border terminal and
be = 2 or if t is a border terminal, be = 1 and the two
border terminals are not neighbors on CH(Z). This
latter test in particular indicates that edges connect-
ing border terminals can appear in SMNs only if the
terminals are neighbors on CH(Z). Finally, we re-
mark that every FST F has to satisfy the inequality
of Theorem 5.

7 Concluding Remarks

We presented some new structural properties of
SMNs. The bound on the size of full Steiner trees
can be used in a straightforward manner. FSTs are
generated during the first phase of the algorithm in
non-decreasing order of the number of terminals they
span. So the generation can be cut off when the num-
ber of terminals gets beyond ⌊n/3⌋+1. The properties
based on the convex hull of the terminals can be used
to obtain new criteria for pruning equilateral points
and FSTs. These criteria will in particular be very
powerful in connection with problem instances where
the number of interior terminals is small. For exam-
ple, problem instances with 8 inner terminal will only
involve FSTs spanning at most 6 terminals. Many
FSTs for such problem instances will be pruned away
as they can contain at most 2 border terminals. Fur-
thermore, if FSTs contain 2 border terminals, then
they have to be neighbors on CH(Z).
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