
Coloring 3-colorable graphs with o(n1/5) colors

Ken-ichi Kawarabayashi∗1 and Mikkel Thorup†2

1 National Institute of Informatics, Tokyo Japan / JST ERATO Kawarabayashi
Project, Tokyo, Japan
k_keniti@nii.ac.jp

2 University of Copenhagen, Copenhagen, Denmark
mikkel2thorup@gmail.com

Abstract
Recognizing 3-colorable graphs is one of the most famous NP-complete problems [Garey, John-
son, and Stockmeyer STOC’74]. The problem of coloring 3-colorable graphs in polynomial time
with as few colors as possible has been intensively studied: O(n1/2) colors [Wigderson STOC’82],
Õ(n2/5) colors [Blum STOC’89], Õ(n3/8) colors [Blum FOCS’90], O(n1/4) colors [Karger, Mot-
wani, Sudan FOCS’94], Õ(n3/14) = O(n0.2142) colors [Blum and Karger IPL’97], O(n0.2111)
colors [Arora, Chlamtac, and Charikar STOC’06], and O(n0.2072) colors [Chlamtac FOCS’07].
Recently the authors got down to O(n0.2049) colors [FOCS’12]. In this paper we get down to
O(n0.19996) = o(n1/5) colors.

Since 1994, the best bounds have all been obtained balancing between combinatorial and
semi-definite approaches. We present a new combinatorial recursion that only makes sense in
collaboration with semi-definite programming. We specifically target the worst-case for semi-
definite programming: high degrees. By focusing on the interplay, we obtained the biggest
improvement in the exponent since 1997.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Computa-
tions on discrete structures, G.2.2 Graph Theory – Graph algorithms

Keywords and phrases Approximation Algorithms, Graph Coloring

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.458

1 Introduction

If ever you want to illustrate the difference between what we consider hard and easy to
someone not from computer science, use the example of 2-coloring versus 3-coloring: suppose
there is too much fighting in a class, and you want to split it so that no enemies end up in the
same group. First you try with a red and a blue group. Put someone in the red group, and
everyone he dislikes in the blue group, everyone they dislike in the red group, and so forth.
This is an easy systematic approach. Digging a bit deeper, if something goes wrong, you
have an odd cycle, and it is easy to see that if you have a necklace with an odd number of
red and blue beads, then the colors cannot alternate perfectly. This illustrates both efficient
algorithms and the concept of a witness. Knowing that red and blue do not suffice, we might
try introducing green, but this is already beyond what we believe computers can do.

∗ Research partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific
Research and by Mitsubishi Foundation.
† Research partly supported by an Advanced Grant from the Danish Council for Independent Research
under the Sapere Aude research carrier programme.

© Ken-ichi Kawarabayashi and Mikkel Thorup;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 458–469

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.458
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

K. Kawarabayashi and M. Thorup 459

Formally a k-coloring of an undirected graph assigns k colors to the vertices. The coloring
is only valid if no two adjacent vertices get the same color. The validity of coloring is trivially
checked in linear time so the deciding if a graph is k-colorable is in NP.

Three-coloring is a classic NP-hard problem. It was proved hard by Garey, Johnson,
and Stockmeyer at STOC’74 [9], and was the prime example of NP-hardness mentioned by
Karp in 1975 [13]. Bipartite or 2-colorable graphs are very well-understood. How about
tripartite or 3-colorable graphs? How can we reason about them if we cannot recognize them?
Three-colorable graphs are obvious targets for any approach to NP-hard problems. With
the approximation approach, given a 3-colorable graph, that is a graph with an unknown
3-coloring, we try to color it in polynomial time using as few colors as possible. The algorithm
is allowed to fail or give up if the input graph was not 3-colorable. If a coloring is produced,
we can always check that it is valid even if the input graph is not 3-colorable. This challenge
has engaged many researchers. At STOC’82, Wigderson [17] got down to O(n1/2) colors for
a graph with n vertices. Berger and Rompel [3] improved this to O((n/(logn))1/2). Blum [4]
came with the first polynomial improvements, first to Õ(n2/5) colors at STOC’89, and then
to Õ(n3/8) colors at FOCS’90.

The next big step at FOCS’94 was by Karger, Motwani, Sudan [12] using semi-definite
programming (SDP). This came in the wake of Goemans and Williamson’s seminal use of
SDP for max-cut at STOC’94 [10]. For a graph with maximum degree ∆max, Karger et
al. got down to O(∆1/3

max) colors. Combining this with Wigderson’s algorithm, they got down
to O(n1/4) colors. Later Blum and Karger [5] combined the SDP from [12] with Blum’s [4]
algorithm, yielding an improved bound of Õ(n3/14) = Õ(n0.2142). Later improvements on
semi-definite programming have also been combined with Blum’s algorithm. At STOC’06,
Arora, Chlamtac, and Charikar [1] got down to O(n0.2111) colors. The proof in [1] is based
on the seminal result of Arora, Rao and Vazirani [2] which gives an O(

√
logn) algorithm for

the sparsest cut problem. At FOCS’07 Chlamtac [6] got down to O(n0.2072) colors. Recently,
at FOCS’12 [14], we presented a purely combinatorial approach (for the first time since Blum
[4]), getting down to Õ(n4/11) colors. Combining it with Chlamtac’s SDP [6], we got down
to O(n0.2049) colors.

Only a few lower bounds are known for the coloring of 3-colorable graphs. We know
that it is NP-hard to get down to 5 colors [11, 15]. Recently, Dinur, Mossel and Regev [7]
showed that it’s hard to color with any constant number of colors (i.e., O(1) colors) based
on a variant of the Unique Games Conjecture.

Integrality gap results [8, 12, 16] indicates that our understanding of SDP coloring
[2, 6, 12] is close to optimal, and it is therefore natural to go back and see if we can improve
things combinatorially.

In this paper we show how to color any 3-colorable n vertex graph in polynomial time
using only O(n0.19996) colors. This is the biggest single improvement in the exponent since
1997 [5], and in particular, we pass the n1/5 milestone. Our approach is combinatorial, but
aiming at a better combination with SDP, we specifically target the worst-case for SDP: high
degrees.

Technical perspective. To appreciate our result, we have to consider the interplay between
combinatorial and semi-definite methods in the above mentioned papers. A parameter ∆
is picked. Using Blum’s notion of progress, it suffices to work with graphs that either have
minimum degree ∆ or maximum degree ∆. A high minimum degree is good for combinatorial
approaches while a low maximum degree is good for semi-definite approaches. The best
bounds are obtained choosing ∆ to balance between the best semi-definite and combinatorial
approaches.

STACS’14

460 Coloring 3-colorable graphs with o(n1/5) colors

On the combinatorial side, the coloring bounds have followed, for i = 1, 2, 3, 4, the
sequence Õ((n/∆)i/(2i−1)). Here i = 1 is from Wigderson at STOC’82 [17], i = 2 is from
Blum at STOC’89 [4], i = 3 is from Blum at FOCS’90 [4]1, and i = 4 is from Kawarabayashi
and Thorup at FOCS’12 [14]. For i→∞, the sequence approaches its limit Õ((n/∆)1/2).
Each of the above steps is based on a new combinatorial coloring idea. It is rather curious
(1) that the resulting bounds have all been of the form Õ((n/∆)i/(2i−1)), and (2) that none
of these STOC/FOCS papers skipped a step in this sequence of bounds.

For a purely combinatorial algorithm, we balance the above bounds with the trivial
∆-coloring that takes out any vertex v with < ∆ neighbors, colors the rest of the graph
inductively, and give v the first color not used in its neighborhood.

The first semi-definite solution of Karger et al. from FOCS’94 [12], got O(∆1/3) colors.
Balancing this with yet to be found Õ((n/∆)1/2) coloring, would yield Õ(n1/5) colors, which
have thus been a natural milestone. Later semi-definite approaches of Arora, Chlamtac, and
Charikar at STOC’06 [1] and Chlamtac at FOCS’07 [6], have gotten down to O(∆1/3−ε(n,∆))
colors where ε(n,∆) > 0 is a small value that decreases as complicated function of ∆. The
integrality gap from [8] implies that ε(n,∆) = o(1) for ∆ = no(1).

Chlamtac [personal communication] stated that we would pass the n1/5 milestone if the
combinatorial side could get down around Õ((n/∆)12/23) colors. This, however, is 8 steps
away in the current sequence where the first 4 steps have taken 20 years, each introducing a
new combinatorial idea.

Our goal is to improve the overall coloring bound in terms of n, and we will indeed get
down to o(n1/5) colors. Using our previous combinatorial algorithm [14] as a subroutine, we
present a novel recursion that gets us down to Õ((n/∆)12/23) colors, but only for the large
values of ∆ needed for an optimal combination with SDP. In combination with Chlamtac’s
SDP [6], we get a polynomial time algorithm that colors any 3-colorable graph on n vertices
with O(n0.19996) colors.

We note that for smaller values of ∆, our new recursion does not offer any improvement
over our previous combinatorial bound Õ((n/∆)4/7) from [14]. Instead of adding another
independent dot, we connect the dots, improving the combinatorial side only in the parameter
range of relevance for combination with SDP.

Contents. The paper is organized as follows. In a preliminary Section 2, we present
notations and basic results needed from [4]. In Section 3, we review our previous algorithm
from [14] which we shall use here as a subroutine. In Section 4 we present our novel recursion
around this subroutine. This completes the description of our new algorithm. Switching to
the analysis, in Section 5 we identify the properties of the subroutine from [14] that we need
for our recursion. This properties follow from the analysis from [14], as will be verified in a
combined journal version. In Section 6 we use these properties for an inductive analysis of
our new recursion.

2 Preliminaries

We hide logn factors, so we use the notation that Õ(x) ≤ x logO(1)(n), Ω̃(x) ≥ x/ logO(1)(n),
õ(x)) ≤ x/ logω(1)(n), and ω̃(x) ≥ x logω(1)(n).

We are given a 3-colorable graph G = (V,E) with |V | = n = ω(1) vertices. The (unknown)
3-colorings are with red, green, and blue. For a vertex v, we let N(v) denote its set of

1 The reference is to the joint journal paper

K. Kawarabayashi and M. Thorup 461

neighbors. For a vertex set X ⊆ V , let N(X) =
⋃
v∈X N(v) be the neighborhood of X.

If Y is a vertex set, we use NY to denote neighbors in Y , so NY (v) = N(v) ∩ Y and
NY (X) = N(X) ∩ Y . We let dY (v) = |N(v) ∩ Y | and dY (X) = {dY (v) | v ∈ Y }. Then
min dY (X), max dY (X), and avg dY (X), denotes the minimum, maximum, and average
degree from X to Y .

For some color target k depending on n, we wish to find an Õ(k) coloring of G in
polynomial time. We reuse several ideas and techniques from Blum’s approach [4].

Progress

Blum has a general notion of progress towards an Õ(k) coloring (or progress for short if k is
understood). The basic idea is that such progress eventually leads to a full Õ(k) coloring of
a graph. Blum presents three types of progress towards Õ(k) coloring:
Type 0: Same color. Finding vertices u and v that have the same color in every 3-coloring.
Type 1: Large independent set. Finding an independent or 2-colorable vertex set X of size
Ω̃(n/k).
Type 2: Small neighborhood. Finding a non-empty independent or 2-colorable vertex set X
such that |N(X)| = Õ(k|X|).

In order to get from progress to actual coloring, we want k to be bounded by a near-
polynomial function f of n where near-polynomial means that f is non-decreasing and that
there are constants c, c′ > 1 such that cf(n) ≤ f(2n) ≤ c′f(n) for all n. As described in [4],
this includes any function of the form f(n) = nα logβ n for constants α > 0 and β.

I Lemma 1 ([4, Lemma 1]). Let f be near-polynomial. If we in time polynomial in n can
make progress towards Õ(f(n)) coloring of either Type 0, 1, or 2, on any 3-colorable graph
on n vertices, then in time polynomial in n, we can Õ(f(n)) color any 3-colorable graph on
n vertices.

The general strategy is to identify a small parameter k for which we can guarantee progress.
To apply Lemma 1 and get a coloring, we need a bound f on k where f is near-polynomial
in n. As soon as we find one progress of the above types, we are done, so generally, whenever
we see a condition that implies progress, we assume that the condition is not satisfied.

Our focus is to find a vertex set X, |X| > 1, that is guaranteed to be monochromatic in
every 3-coloring. This will happen assuming that we do not get other progress on the way.
When we have the vertex set X, we get same-color progress for any pair of vertices in X.
We refer to this as monochromatic progress.

Most of our progress will be made via results of Blum presented below using a common
parameter

Ψ = n/k2. (1)

A very useful tool we get from Blum is the following multichromatic (more than one color)
test:

I Lemma 2 ([4, Corollary 4]). Given a vertex set X ⊆ V of size at least Ψ = n/k2, in
polynomial time, we can either make progress towards an Õ(k)-coloring of G, or else guarantee
that under every legal 3-coloring of G, the set X is multichromatic.

The following lemma is implicit in [4] and explicit in [14].

I Lemma 3 ([14, Lemma 6]). If the vertices in a set Z on the average have d neighbors in
U , then the whole set Z has at least min{d/Ψ, |Z|} d/2 distinct neighbors in U (otherwise
some progress is made).

STACS’14

462 Coloring 3-colorable graphs with o(n1/5) colors

Large minimum degree

Our algorithms will exploit a lower bound ∆ on the minimum degree in the graph. It is
easily seen that if a vertex v has d neighbors, then we can make progress towards Õ(d)
coloring since this is a small neighborhood for Type 2 progress. For our color target k, we
may therefore assume:

k ≤ ∆/ loga n for any constant a. (2)

However, combining with semi-definite programming (SDP) as in [5], we can assume a much
larger minimum degree. The combination is captured by the following lemma, which is
proved in [14, §VIII]:

I Lemma 4 ([5, 14]). Suppose that for some near-polynomial functions d and f , we for any
n can make progress towards Õ(f(n)) coloring for

any 3-colorable graph on n vertices with minimum degree ≥ d(n).
any 3-colorable graph on n vertices with maximum degree ≤ d(n).

Then we can make progress towards Õ(f(n))-coloring on any 3-colorable graph on n vertices.

Using the SDP from [12], we can make progress towards d(n)1/3 for graphs with degrees
below d(n), so by Lemma 4, we may assume

k ≤ ∆1/3. (3)

We can do even better using the strongest SDP result of Chlamtac from [6, Theorem 15]:

I Theorem 5 ([6]). For any τ > 6
11 there is a c > 0 such that there is a polynomial time

algorithm that for any 3-colorable graph G with n vertices and all degrees below ∆ = nτ finds
an independent set of size Ω̃

(
n/∆1/(3+3c)). Hence we can make Type 2 progress towards an

Õ
(
∆1/(3+3c)) = Õ

(
nτ/(3+3c))-coloring.

The requirement on τ and c is that c < 1/2 and λc,τ (α) = 7/3 + c+ α2/(1− α2)− (1 +
c)/τ − (

√
(1 + α)/2 +

√
c(1− α)/2)2 is positive for all α ∈ [0, c

1+c].

I Corollary 6. In polynomial time, for any 3-colorable graph with n vertices, and all degrees
below ∆ = n0.61674333, we can make progress towards an Õ(n0.19996)-coloring.

Proof. We apply Theorem 5 with τ = 0.6167433 and c = 0.02811113. Then For α ∈ [0, c
1+c],

it is easily verified that λc,τ (α) is minimized and positive with α = 0.0273425. Then
τ/(3 + 3c) = 0.19996. J

By Lemma 4, we may thus assume

k = n0.19996 and ∆ = n0.61674333. (4)

With this setting k is slightly smaller than (n/∆)12/23. Our original algorithm from [14] only
assumes the combinatorial bound (2), to make progress towards Õ((n/∆)4/7) coloring. It is
only in our new developments that we need the higher degrees that can be assumed via SDP.

Two-level neighborhood structure

The most complex ingredient we get from Blum [4] is a certain regular second neighborhood
structure. Let ∆ be the smallest degree in the graph G. In fact, we shall use the slightly
modified version described in [14].

Unless other progress is made, for some ∆1 = Ω̃(∆), in polynomial time [4, 14] identifies
a 2-level neighborhood structure H1 = (r1, S1, T1) in G consisting of:

K. Kawarabayashi and M. Thorup 463

A root vertex r1. We assume r1 is colored red in any 3-coloring.
A first neighborhood S1 ⊆ N(r1) of size at least ∆1.
A second neighborhood T1 ⊆ N(S1) of size at most n/k. The sets S1 and T1 may overlap.
The edges between vertices in H1 are the same as those in G.
The vertices in S1 all have degrees at least ∆1 into T1.
For some δ1 the degrees from T1 to S1 are all between δ1 and 5δ1.

3 Review of our FOCS’12 coloring

Our algorithm makes internal use of the coloring algorithm from [14], which we review below.
It uses the above 2-level neighborhood structure H1 = (r1, S1, T1), and works on induced
subproblems (S, T) ⊆ (S1, T1) defined in terms of a subsets S ⊆ S1 and T ⊆ T1. The edges
considered in the subproblem are exactly those between S and T in G. This edge set is
denoted E(S, T).

With r1 red in any 3-coloring, we know that all vertices in S ⊆ S1 ⊆ N(r1) are blue or
green. We say that a vertex in T has high S-degree if its degree to S is bigger than δ1/4,
and we will make sure that any subproblem (S, T) considered satisfies:
(i) We have more than Ψ vertices of high S-degree in T .
In [14, §IV] we implemented a subroutine cut-or-color(t, S, T) which for a problem (S, T) ⊆
(S1, T1) starts with an arbitrary high S-degree vertex t ∈ T . It has one of the following
outcomes:

Some progress toward a Õ(k)-coloring. Then we are done, so we assume that this does
not happen.
A guarantee that if r1 and t have different colors in a 3-coloring C3 of G, then S is
monochromatic in C3.
Reporting a “sparse cut around a subproblem (X,Y) ⊆ (S, T)” satisfying the following
conditions:
(i) The original high S-degree vertex t has all its neighbors from S in X, that is,

NS(t) ⊆ X.
(ii) All edges from X to T go to Y , so there are no edges between X and T \ Y .
(iii) Each vertex s′ ∈ S \X has |NY (s′)| < Ψ.
(iv) Each vertex t′ ∈ T \ Y has |NY (NS(t′))| < Ψ.

Assuming cut-or-color, we now review the main recursive algorithm, monochromatic,
from [14]. It takes as input a subproblem (S, T). The pseudo-code is presented in Algorithm 1.

Algorithm 1: monochromatic(S, T)
let U be the set of high S-degree vertices in T ;
check that U is multichromatic in G with Lemma 2; // if not, progress found and we are
done
if there is a t ∈ U such that cut-or-color(S, T, t) returns “sparse cut around (X,Y)” then

recursively call monochromatic(X,Y)
else

return “S is monochromatic in every 3-coloring”

Let U be the set of high S-degree vertices in T . By 1 we have |U | ≥ Ψ, so we can apply
Blum’s multichromatic test from Lemma 2 to U in G. Assuming we did not make progress,

STACS’14

464 Coloring 3-colorable graphs with o(n1/5) colors

we know that U is multichromatic in every valid 3-coloring. We now apply cut-or-color to
each t ∈ U , stopping only if a sparse cut is found or progress is made. If we make progress,
we are done, so assume that this does not happen. If a sparse cut around a subproblem
(X,Y) is found, we recurse on (X,Y).

The most interesting case is when we get neither progress nor a sparse cut.

I Lemma 7. If cut-or-color does not find progress nor a sparse cut for any high S-degree
t ∈ U , then S is monochromatic in every 3-coloring of G.

Proof. Consider any 3-coloring C3 of G. With Lemma 2 we checked that U is multichromatic
in every 3-coloring of G including C3, so there is some t ∈ U that has a different color than r1
in C3. With this t, cut-or-color(S, T, t) guarantees that S is monochromatic in C3. Note
that different 3-colorings may use a different vertex t for the guarantee, and our algorithm
does not need to know which t are used. J

Thus, unless other progress is made, monochromatic ends up with a set S that is monochro-
matic in every 3-coloring, and then monochromatic progress can be made. However, the
correctness demands that we respect 1 and never apply monochromatic to a subproblem
(S, T) where T has less than Ψ high S-degree vertices (otherwise Lemma 2 cannot be applied
to U).

In [14] it is proved that 1 is respected when the recursion monochromatic(S1, T1) starts
in the initial two-level structure (S1, T1) from Section 2. In each recursive step, we take the
subproblem (X,Y) returned by cut-or-color, and recurse on (S, T) = (X,Y). The analysis
from [14] has the following points:

If the average degree from Y to X is at least δ1/2, then (S, T) = (X,Y) satisfies 1.
The set Y is of size at least ∆2

1k
2/(2n) and has at least δ1|Y | ≥ δ1∆2

1k
2/(2n) edges to S1.

The set Y has at most (40δ1n2)/(∆2
1k

4) · |T1| edges to T1 \X (this is the hard part).
We pick k = Θ((n/∆1)4/7) such that

40δ1n2

∆2
1k

4 |T1| = δ1∆2
1k

2/(4n) ≤ δ1|Y |/2.

Then the average degree from Y to X is at least δ1/2, implying 1 for (S, T) = (X,Y).

4 A novel outer loop for high degree graphs

As described above, the first call to Algorithm 1 is with the initial problem (S1, T1) that
is regular in the sense that the degrees from T1 to S1 are all between δ1 and 5δ1 for some
δ1. However, with a color target k below Θ((n/∆1)4/7), we can no longer guarantee that
the average degree from Y to X remains above δ1/2. To preserve the correctness, we will
stop our recursive Algorithm 1 if we get to a subproblems (X,Y) where the average degree
from Y to X is less than δ1/2. Inside (X,Y) we find a new regular subproblem (S2, T2)
where the degrees are between δ2 and 5δ2 for some δ2. Again we apply Algorithm 1 until the
average drops below δ2/2. We continue this new outer loop, generating a sequence of regular
subproblems (S1, T1) ⊃ (S2, T2) ⊃ (S3, T3) ⊃ · · · , until we somehow end up either making
progress, or some error event happens. In combination with SDP, our analysis will show that
this outer loop can be used to give error-free progress towards Õ(n0.19996) coloring.

The regularization is described in Algorithm 2, and it is, in itself, fairly standard. Blum
[4] used several similar regularizations.

K. Kawarabayashi and M. Thorup 465

Algorithm 2: regularize(S, T)
Let d` = (4/3)`;
Partition the vertices of T into sets U` = {v ∈ T | dS(v) ∈ [d`, d`+1)};
Subject to d` ≥ avg dS(T)/2 let ` maximize |E(U`, S)|;
δ r ← d`/4; ∆r ← avg dU`

(S)/4;
Repeatedly remove vertices v ∈ S with dU`

(v) ≤ ∆ r and w ∈ U` with dS(w) ≤ δ r;
S r ← S; T r ← U`;
return (S r, T r,∆ r, δ r)

I Lemma 8. When regularize(S, T) in Algorithm 2 returns (S r, T r,∆ r, δ r) then ∆r ≥
avg dT (S)/(30 lgn) and δ r ≥ avg dS(T)/8. The sets S r and T r are both non-empty. The
degrees from S r to T r are at least ∆ r and the degrees from T r to S r are between δ r and
5δ r.

Proof. Below S and U` refers to the sets before vertices are removed. We have S r and T r

denoting the sets after the vertices have been removed.
To prove ∆r ≥ avg dT (S)/(30 lgn), we first note that the sets U` with d` < avg dS(T)/2

only contain vertices of degree below (4/3)avg dS(T)/2 = (2/3)avg dS(T), so at least 1/3 of
the edges from E(S, T) leave vertices from sets U` satisfying the condition d` ≤ avg dS(T)/2.
There are only log4/3 n < (5/2) lgn possible values of `, and subject to the condition,
we picked ` maximizing E(S,U`). Therefore |E(S,U`)| > (1/3)|E(S, T)|/((5/2) lgn) =
(2/15)|E(S, T)|/ lgn. It follows that ∆r ≥ avg dU`

(S)/4 > avg dT (S)/(30 lgn).
The only other slightly non-trivial statement is that the sets S r and T r do not end up

empty. When we remove vertices from S, we remove at most |S|avg dU`
(S)/4 ≤ |E(S,U`)|/4

edges, and likewise for the vertices removed from U`, so these removals take away at most
half the edges. It follows that some edges remain hence that S r, T r 6= ∅. J

Our new coloring is described in Algorithm 3. Except for the possible regularization,
each round j is an iterative version of the recursive Algorithm 1. Moreover, we have made
it self-checking in the sense that we report an error if the set U of high degree vertices is
too small for 1 (“Error B” below). Also, we report an error if the set S is too small for
monochromatic progress which requires at least two same-color vertices (“Error A” below).
With k = Θ((n/∆)4/7), the analysis from [14] shows that we never get an error and that we
never get |E(S, T)| ≤ δ1|T |/2, so the regularization never happens.

The outer loop in Algorithm 3 continues until it either makes an error, or makes progress.
The progress can either be explicit with a monochromatic set, or it can happen implicitly
as part of the multichromatic test from Lemma 2. Ensuring that we make progress and no
errors happen will require a very careful choice of parameters, and we will only gain over
[14] when large minimum degree vertices are guaranteed from SDP as in (3) or (4).

5 A good round

When we start round j of Algorithm 3 with a problem (Sj , Tj ,∆j , δj), it follows directly
from Lemma 8 that the degrees from Tj to Sj are between δj and 5δj , and that the degrees
from Sj to Tj are all at least ∆j .

The journal version of this conference paper will also cover [14] and there we will make
a simple generalization of the analysis from [14] so that it applies to an arbitrary round j

STACS’14

466 Coloring 3-colorable graphs with o(n1/5) colors

Algorithm 3: Seeking progress towards Õ(k) coloring
let (S1, T1,∆1, δ1) be the initial two-level structure from Section 2;
for j ← 1, 2, ... do // outer loop, round j

(S, T)← (Sj , Tj);
repeat // iterative version of recursive monochromatic(Sj , Tj)

if |S| ≤ 1 then return “Error A”;
U ← {v ∈ T | dS(v) ≥ δj/4};
if |U | < Ψ then return “Error B”;
check U multichromatic with Lemma 2; // if not, progress was found and we are
done
if ∃t ∈ U such that cut-or-color(S, T, t) returns “sparse cut around (X,Y)” then

(S, T)← (X,Y)
else return “S is monochromatic in every 3-coloring, so monochromatic progress
found”

until |E(S, T)| < δj |T |/2;
(Sj , Tj ,∆j , δj) = regularize(S, T);

of the outer loop in Algorithm 3—not just round 1. Below we describe the outcome of the
analysis.

The basic requirements for the analysis is that the following pre-conditions are satisfied:

∆j = ω(Ψ) (5)
δj ≥ 4∆j/Ψ (6)

Based on the pre-conditions, it will follow that no error is made in the round. Also, for any
subproblem (X,Y) considered, it will follow that

min dY (X) ≥ ∆j (7)
|X| ≥ δj/4 (8)
|Y | ≥ ∆2

j/(2Ψ) (9)

If no progress is made in the round, we will get to a subproblem (X,Y) where the average
degree from Y to X is smaller than δj/2. This is where we terminate the round and regularize.
Let (Xj , Yj) denote this final subproblem of round j. The most interesting part of the analysis
is to argue

|Yj | ≤ |Tj |(80n2)/(∆2
jk

4). (10)

Note here that if the upper bound from (10) is smaller than the lower bound in (9), then we
can conclude that we never get to the last subproblem (Xj , Yj), hence progress must have
be made in round j. With the parameters from [14], we get this contradiction already for
the first round j = 1. However, with a smaller k, the upper bound is higher, and then more
rounds may happen.

We say round j is good if
the pre-conditions (5) and (6) are satisfied at the beginning of the round.
No error is made during the round.
(7)–(10) are satisfied as long as no progress is made.

A simple generalization of the analysis from [14] implies

I Lemma 9 ([14]). Round j is good if and only if pre-conditions (5) and (6) are satisfied.

K. Kawarabayashi and M. Thorup 467

6 Analysis of outer loop

Using Lemma 9 we will prove

I Theorem 10. Suppose for some integer c = O(1) that

k = ω̃
(

(n/∆)
2c+2
4c+3

)
. (11)

and for all j = 1, ..., c− 1,

(∆/k)(∆k/n)j(∆k2/n)j(j+1) = ∆j2+2j+1k 2j2+3j−1/n j
2+2j = ω̃(1). (12)

Then Algorithm 3 will make only good rounds, and make progress towards an Õ(k) coloring
no later than round c.

If we did not have the j-bound (12), we would just make c very large, with (11) converging
to (n/∆)1/2. The j-bound (12) is rather unattractive, but we need it to make sure that no
errors are made when c > 1. As an example, our previous bound k = Õ((n/∆)4/7) from [14]
corresponds to the case c = 1 in (11). To improve this bound, we need c > 1. In particular,
we need to satisfy (12) for j = 1 which becomes ∆4k4/n3 = ω̃(1). Now k ≤ (n/∆)4/7

implies ∆4(n/∆)4/7·4/n3 = ∆12/7/n5/7 = ω̃(1) ⇐⇒ ∆ = ω̃(n5/12). Thus we can only make
improvements over [14] if we restrict ourselves to sufficiently high degrees, e.g., relying on
SDP for lower degrees.

Note that if
√
n/∆ < k < n/∆, then (12) must be minimized for some unique j ∈ R.

However, since c = O(1), we can easily check (12) for all j = 1, .., c− 1 with a computer.
In the rest of this section, we will prove Theorem 10 by induction assuming (11) and

(12). Also, from Lemma 9, we know that round j is good if the pre-conditions (5) and (6)
are satisfied. First, for the base case, we will show (a) that the pre-conditions are satisfied
for round 1, and hence that round 1 is good. Next, assuming the first j rounds are good, but
no progress is made, we will show (b) that j < c and (c) that the pre-conditions of round
j + 1 are satisfied. By induction, (a), (b), and (c) imply Theorem 10.

First round

For the pre-conditions of the first round, we need

I Lemma 11. Ψ = n/k2 = ∆/nΩ(1)

Proof. Since c is constant, (11) implies k > (n/∆)1/2+Ω(1), hence Ψ = n/k2 = ∆/(n/∆)Ω(1).
Finally we need to argue (n/∆) = nΩ(1). This follows because the neighborhood of any
vertex is 2-colorable, hence we always make Type 2 progress towards Õ(n/∆) coloring. We
are only aiming for k = nΩ(1) coloring, so we would be done if (n/∆) = no(1). J

Since ∆1 = Ω̃(∆), we get Ψ = o(∆1). Pre-condition (5) for round 1 thus follows Lemma 11.
For pre-condition (6), we note that ∆1/Ψ = ∆1k

2/n and 5δ1 ≥ ∆1|S1|/[T1| = Ω̃(∆1∆k/n).
Moreover, by (3) we have k ≤ ∆1/3. Hence δ1 � 4∆1/Ψ, so pre-condition (6) is also satisfied
for round 1. Thus we conclude that both pre-conditions are satisfied for round 1, hence by
Lemma 9, round 1 is good.

STACS’14

468 Coloring 3-colorable graphs with o(n1/5) colors

General rounds

Now for j ≤ c, we assume that the first j rounds are good but that no progress is made. We
want to prove that j < c and that the pre-conditions of round j + 1 are satisfied.

Since no progress is made, round j ends up regularizing. As in Section 5, we let Xj and
Yj denote the last values of X and Y . Then

(Sj+1, Tj+1,∆j+1, δj+1) = regularize(Xj , Yj).

We will derive inductive bounds on |Tj+1|, ∆j+1, and δj+1. From (7) and Lemma 8 with
(S, T) = (Xj , Yj), we get

∆j+1 ≥ avg dYj
(Xj)/(30 lgn) ≥ ∆j/(30 lgn) ≥ ∆1/(30 lgn)j = Ω̃(∆). (13)

From (10) we also have

|Tj+1| ≤ |Yj | ≤ |Tj | (80n2)/(∆2
jk

4) = Õ(|Tj |n2/(∆2k4))

= Õ

(
|T1|

(
n2

∆2k4

)j)
= Õ

(
(n/k)

(
n2

∆2k4

)j)
.

From (9), we know that any Y considered, including Yj , is of size at least ∆2
j/(2Ψ) =

Ω̃(∆2/Ψ) = Ω̃(∆2k2/n), so we must have

∆2k2/n = Õ

(
(n/k)

(
n2

∆2k4

)j)
⇐⇒ k = Õ

(
(n/∆)

2j+2
4j+3

)
.

By (11) this implies that j < c.
Next we need to argue that preconditions (5) and (6) are satisfied for round j + 1. By

(13), we get that (5) follows from Lemma 11.
The critical issue is to make sure that pre-condition (6) is satisfied with δj+1 ≥ 4∆j/Ψ.

Using (7)–(10), we get that

avg dXj
(Yj) ≥ ∆j |Xj |/|Yj | = ∆j(δj/4)/Õ

(
(n/k)

(
n2

∆2k4

)j)
= Ω̃

(
∆jδj(k/n)

(
∆2k4/n2)j) .

By Lemma 8, δj+1 ≥ avg dXj
(Yj)/8, so δj+1 = δj Ω̃

(
∆j(k/n)

(
∆2k4/n2)j). Inductively,

since j = O(1) and ∆h = Ω̃(∆) for all h ≤ j, it follows that

δj = Ω̃
(
δ1(∆k/n)j−1 (∆2k4/n2)j(j−1)/2

)
.

Therefore δj+1 = Ω̃
(
δ1(∆jk/n)(∆k/n)j−1 (∆2k4/n2)j(j+1)/2

)
. Here 5δ1 ≥ |S1|∆1/|T1| =

Ω̃(∆2k/n), so we get

δj+1 = Ω̃
(

∆j(∆k/n)j+1 (∆k2/n
)j(j+1)

)
By (12) we have (∆/k)(∆k/n)j(∆k2/n)j(j+1) = ω̃(1), so

(∆k/n)j+1 (∆k2/n
)j(j+1) = ω̃(k2/n) = ω̃(1/Ψ).

Thus δj+1 = ω̃(∆j/Ψ) > 4∆j/Ψ, so pre-condition (6) is indeed satisfied for round j+ 1. This
completes our proof of Theorem 10. Our main coloring result follows.

K. Kawarabayashi and M. Thorup 469

I Theorem 12. In polynomial time, we can color any 3-colorable n vertex graph using
Õ(n0.19996) colors.

Proof. We use Chlamtac’s SDP [6] for low degrees, so as stated in (4), for progress towards
an k = Õ(n0.19996) coloring, we may assume the minimum degree is at least ∆ = n0.61674333.
Then (n/∆)14/27 < k < (n/∆)12/23, so to satisfy (11) in Theorem 10, we set c = 6. It is
easily verified that (12) is satisfied for j = 1, ..., 5. By Theorem 10, we conclude that progress
is made within the first c = 6 rounds.

Incidentally, with our particular values of k and ∆, for an integer j, (12) reaches its
minimum with j = 5. This implies that our bounds also hold with any larger c. J

References
1 S. Arora, E. Chlamtac, and M. Charikar. New approximation guarantee for chromatic

number. In Proc. 38th STOC, pages 215–224, 2006.
2 S. Arora, S. Rao, and U. Vazirani. Expanders, geometric embeddings and graph partition-

ing. J. ACM, 56(2):1–37, 2009. Announced at STOC’04.
3 B. Berger and J. Rompel. A better performance guarantee for approximate graph coloring.

Algorithmica, 5(3):459–466, 1990.
4 A. Blum. New approximation algorithms for graph coloring. J. ACM, 41(3):470–516, 1994.

Announced at STOC’89 and FOCS’90.
5 A. Blum and D.R. Karger. An Õ(n3/14)-coloring algorithm for 3-colorable graphs. Inf.

Process. Lett., 61(1):49–53, 1997.
6 E. Chlamtac. Approximation algorithms using hierarchies of semidefinite programming

relaxations. In Proc. 48th FOCS, pages 691–701, 2007.
7 I. Dinur, E. Mossel, and O. Regev. Conditional hardness for approximate coloring. SIAM

J. Comput., 39(3):843–873, 2009. Announced at STOC’06.
8 U. Feige, M. Langberg, and G. Schechtman. Graphs with tiny vector chromatic numbers

and huge chromatic numbers. SIAM J. Comput., 33(6):1338–1368, 2004. Announced at
FOCS’02.

9 M.R. Garey, D.S. Johnson, and L.J. Stockmeyer. Some simplified np-complete graph prob-
lems. Theor. Comput. Sci., 1(3):237–267, 1976. Announced at STOC’74.

10 M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145,
1995. Announced at STOC’94.

11 V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. SIAM
Journal on Discrete Mathematics, 18(1):30–40, 2004.

12 D.R. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite
programming. J. ACM, 45(2):246–265, 1998. Announced at FOCS’94.

13 R. Karp. On the computational complexity of combinatorial problems. Networks, 5:45–68,
1975.

14 K. Kawarabayashi and M. Thorup. Combinatorial coloring of 3-colorable graphs. In Proc.
53rd FOCS, pages 68–75, 2012.

15 S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic
number. Combinatorica, 20(3):393–415, 2000.

16 M. Szegedy. A note on the θ number of Lovász and the generalized Delsarte bound. In
Proc. 35th FOCS, pages 36–39, 1994.

17 A. Wigderson. Improving the performance guarantee for approximate graph coloring. J.
ACM, 30(4):729–735, 1983. Announced at STOC’82.

STACS’14

	Introduction
	Preliminaries
	Review of our FOCS'12 coloring
	A novel outer loop for high degree graphs
	A good round
	Analysis of outer loop

