Universal temperature and body-mass scaling of feeding rates

Björn C. Rall, Ulrich Brose, Martin Hartvig, Gregor Kalinkat, Florian Schwarzmüller, Olivera Vucic-Pestic, Owen L. Petchey

237 Citations (Scopus)

Abstract

Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer-resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer - resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass-and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure.

Original languageEnglish
JournalPhilosophical Transactions of the Royal Society B: Biological Sciences
Volume367
Issue number1605
Pages (from-to)2923-2934
Number of pages12
ISSN0962-8436
DOIs
Publication statusPublished - 2012

Fingerprint

Dive into the research topics of 'Universal temperature and body-mass scaling of feeding rates'. Together they form a unique fingerprint.

Cite this