TY - JOUR
T1 - The proton-coupled amino acid transporter, SLC36A1 (hPAT1), transports Gly-Gly, Gly-Sar and other Gly-Gly mimetics
AU - Frølund, Sidsel
AU - Holm, René
AU - Brodin, Birger
AU - Nielsen, Carsten Uhd
PY - 2010/10
Y1 - 2010/10
N2 - BACKGROUND AND PURPOSE The intestinal proton-coupled amino acid transporter, SLC36A1, transports zwitterionic α-amino acids and drugs such as vigabatrin, gaboxadol and δ-aminolevulinic acid. We hypothesize that SLC36A1 might also transport some dipeptides. The aim of the present study was to investigate SLC36A1-mediated transport of Gly-Gly and Gly-Gly mimetics, and to investigate Gly-Sar transport via SLC36A1 and the proton-coupled dipeptide/tripeptide transporter, SLC15A1 in Caco-2 cells. EXPERIMENTAL APPROACH Transport of a compound via SLC36A1 was determined by its ability to induce an increase in the inward current of two-electrode voltage clamped SLC36A1 cRNA-injected Xenopus laevis oocytes. SLC36A1-mediated 1-[ 3H]Pro uptake in Caco-2 cells was measured in the absence and presence of Gly-Gly or Gly-Sar. In addition, apical [ 14C]Gly-Sar uptake was measured in the absence and presence of the SLC36A1 inhibitor 5-hydroxy-l-tryptophan (5-HTP) or the SLC15A1 inhibitor l-4,4′-biphenylalanyl-l-proline (Bip-Pro). KEY RESULTS In SLC36A1-expressing oocytes, an inward current was induced by Gly-Sar, Gly-Gly, δ-aminolevulinic acid, β-aminoethylglycine, δ-aminopentanoic acid, GABA, Gly and Pro, whereas Val, Leu, mannitol, 5-HTP and the dipeptides Gly-Ala, Gly-Pro and Gly-Phe did not evoke currents. In Caco-2 cell monolayers, the apical uptake of 30 mM Gly-Sar was inhibited by 20 and 22% in the presence of 5-HTP or Bip-Pro, respectively, and by 48% in the presence of both. CONCLUSION AND IMPLICATIONS Our results suggest that whereas Gly-Gly amid bond bioisosteres are widely accepted by the hPAT1 carrier, dipeptides in general are not; and therefore, Gly-Sar might structurally define the size limit of dipeptide transport via SLC36A1.
AB - BACKGROUND AND PURPOSE The intestinal proton-coupled amino acid transporter, SLC36A1, transports zwitterionic α-amino acids and drugs such as vigabatrin, gaboxadol and δ-aminolevulinic acid. We hypothesize that SLC36A1 might also transport some dipeptides. The aim of the present study was to investigate SLC36A1-mediated transport of Gly-Gly and Gly-Gly mimetics, and to investigate Gly-Sar transport via SLC36A1 and the proton-coupled dipeptide/tripeptide transporter, SLC15A1 in Caco-2 cells. EXPERIMENTAL APPROACH Transport of a compound via SLC36A1 was determined by its ability to induce an increase in the inward current of two-electrode voltage clamped SLC36A1 cRNA-injected Xenopus laevis oocytes. SLC36A1-mediated 1-[ 3H]Pro uptake in Caco-2 cells was measured in the absence and presence of Gly-Gly or Gly-Sar. In addition, apical [ 14C]Gly-Sar uptake was measured in the absence and presence of the SLC36A1 inhibitor 5-hydroxy-l-tryptophan (5-HTP) or the SLC15A1 inhibitor l-4,4′-biphenylalanyl-l-proline (Bip-Pro). KEY RESULTS In SLC36A1-expressing oocytes, an inward current was induced by Gly-Sar, Gly-Gly, δ-aminolevulinic acid, β-aminoethylglycine, δ-aminopentanoic acid, GABA, Gly and Pro, whereas Val, Leu, mannitol, 5-HTP and the dipeptides Gly-Ala, Gly-Pro and Gly-Phe did not evoke currents. In Caco-2 cell monolayers, the apical uptake of 30 mM Gly-Sar was inhibited by 20 and 22% in the presence of 5-HTP or Bip-Pro, respectively, and by 48% in the presence of both. CONCLUSION AND IMPLICATIONS Our results suggest that whereas Gly-Gly amid bond bioisosteres are widely accepted by the hPAT1 carrier, dipeptides in general are not; and therefore, Gly-Sar might structurally define the size limit of dipeptide transport via SLC36A1.
U2 - 10.1111/j.1476-5381.2010.00888.x
DO - 10.1111/j.1476-5381.2010.00888.x
M3 - Journal article
C2 - 20880398
SN - 0007-1188
VL - 161
SP - 589
EP - 600
JO - British Journal of Pharmacology
JF - British Journal of Pharmacology
IS - 3
ER -