TY - GEN
T1 - Seizure recognition on epilepsy feature tensor
AU - Acar, Evrim
AU - Bingos, Canan Aykut
AU - Bingol, Haluk
AU - Bro, Rasmus
AU - Yener, Bülent
PY - 2007/12/1
Y1 - 2007/12/1
N2 - With a goal of automating visual analysis of electroencephalogram (EEG) data and assessing the performance of various features in seizure recognition, we introduce a mathematical model capable of recognizing patient-specific epileptic seizures with high accuracy. We represent multi-channel scalp EEG using a set of features. These features expected to have distinct trends during seizure and non-seizure periods include features from both time and frequency domains. The contributions of this paper are threefold. First, we rearrange multi-channel EEG signals as a third-order tensor called an Epilepsy Feature Tensor with modes: time epochs, features and electrodes. Second, we model the Epilepsy Feature Tensor using a multilinear regression model, i.e., Multilinear Partial Least Squares regression, which is the generalization of Partial Least Squares (PLS) regression to higher-order datasets. This two-step approach facilitates EEG data analysis from multiple electrodes represented by several features from different domains. Third, we identify which features are more significant for seizure recognition. Our results based on the analysis of 19 seizures from 5 epileptic patients demonstrate that multiway analysis of an Epilepsy Feature Tensor can detect (patient-specific) seizures with classification accuracy ranging between 77-96%.
AB - With a goal of automating visual analysis of electroencephalogram (EEG) data and assessing the performance of various features in seizure recognition, we introduce a mathematical model capable of recognizing patient-specific epileptic seizures with high accuracy. We represent multi-channel scalp EEG using a set of features. These features expected to have distinct trends during seizure and non-seizure periods include features from both time and frequency domains. The contributions of this paper are threefold. First, we rearrange multi-channel EEG signals as a third-order tensor called an Epilepsy Feature Tensor with modes: time epochs, features and electrodes. Second, we model the Epilepsy Feature Tensor using a multilinear regression model, i.e., Multilinear Partial Least Squares regression, which is the generalization of Partial Least Squares (PLS) regression to higher-order datasets. This two-step approach facilitates EEG data analysis from multiple electrodes represented by several features from different domains. Third, we identify which features are more significant for seizure recognition. Our results based on the analysis of 19 seizures from 5 epileptic patients demonstrate that multiway analysis of an Epilepsy Feature Tensor can detect (patient-specific) seizures with classification accuracy ranging between 77-96%.
UR - http://www.scopus.com/inward/record.url?scp=57649216253&partnerID=8YFLogxK
U2 - 10.1109/IEMBS.2007.4353280
DO - 10.1109/IEMBS.2007.4353280
M3 - Article in proceedings
C2 - 18002946
AN - SCOPUS:57649216253
SN - 1424407885
SN - 9781424407880
T3 - Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
SP - 4273
EP - 4276
BT - 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07
T2 - 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07
Y2 - 23 August 2007 through 26 August 2007
ER -