Reproductive success of bromadiolone-resistant rats in absence of anticoagulant pressure

Ann-Charlotte Heiberg, Herwig Leirs, Hans Redlef Siegismund

    18 Citations (Scopus)

    Abstract

    Resistance to anticoagulant rodenticides in brown rats (Rattus norvegicus Berk.) is associated with pleiotropic effects, notably with an increased dietary vitamin K requirement. Owing to this disadvantage, resistance is believed to be selected against if anticoagulant selection is absent. In small experimental populations of wild brown rats, an investigation was carried out to establish whether tolerance to anticoagulant exposure changed over a period of 2 years. In the same populations, DNA microsatellite markers were used to infer parentage, and this made it possible to estimate reproductive success of sensitive and resistant rats and estimate effective population size, Ne. Even though there was evidence for a selection against resistant rats with high vitamin K requirement, anticoagulant tolerance was not seen to be significantly influenced in the absence of bromadiolone selection. As the population size under investigation was small, random genetic drift may have played a role in this. In the presence of bromadiolone selection, however, the tolerance was significantly increased, suggesting that continuous selection will increase the proportion of highly resistant rats in the population. It was found that, for both males and females, surprisingly few individuals contributed to the next generation with numerous offspring, and most breeders contributed with none or a single offspring. The expected higher reproductive success and consequent increase in proportional numbers of sensitive rats in the absence of anticoagulant selection could not be observed. Among the resistant rats, moderately resistant females were found to be better breeders than highly resistant breeders, but for resistant males the reverse was true. This could be explained by the fact that the increased vitamin K requirement results in sex differential selection; in highly resistant males the selection presumably takes place at the immature stage, whereas in females the vitamin K requirement becomes crucial at the reproductive stage, as vitamin K is not only essential for the blood clotting process but also for bone formation. Copyright © 2006 Society of Chemical Industry
    Original languageEnglish
    JournalPest Management Science
    Volume62
    Issue number9
    Pages (from-to)862-871
    ISSN1526-498X
    DOIs
    Publication statusPublished - 2006

    Fingerprint

    Dive into the research topics of 'Reproductive success of bromadiolone-resistant rats in absence of anticoagulant pressure'. Together they form a unique fingerprint.

    Cite this