Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies

Bhagwan Yadav, Tea Pemovska, Agnieszka Szwajda, Evgeny Kulesskiy, Mika Kontro, Riikka Karjalainen, Muntasir Mamun Majumder, Disha Malani, Astrid Murumägi, Jonathan Knowles, Kimmo Porkka, Caroline Heckman, Olli Kallioniemi, Krister Wennerberg, Tero Aittokallio

118 Citations (Scopus)

Abstract

We developed a systematic algorithmic solution for quantitative drug sensitivity scoring (DSS), based on continuous modeling and integration of multiple dose-response relationships in high-throughput compound testing studies. Mathematical model estimation and continuous interpolation makes the scoring approach robust against sources of technical variability and widely applicable to various experimental settings, both in cancer cell line models and primary patient-derived cells. Here, we demonstrate its improved performance over other response parameters especially in a leukemia patient case study, where differential DSS between patient and control cells enabled identification of both cancer-selective drugs and drug-sensitive patient sub-groups, as well as dynamic monitoring of the response patterns and oncogenic driver signals during cancer progression and relapse in individual patient cells ex vivo. An open-source and easily extendable implementation of the DSS calculation is made freely available to support its tailored application to translating drug sensitivity testing results into clinically actionable treatment options.

Original languageEnglish
JournalScientific Reports
Volume4
Pages (from-to)5193
ISSN2045-2322
DOIs
Publication statusPublished - 5 Jun 2014
Externally publishedYes

Keywords

  • Algorithms
  • Antineoplastic Agents/pharmacology
  • Case-Control Studies
  • Drug Resistance, Neoplasm/drug effects
  • Humans
  • Leukemia, Myeloid, Acute/drug therapy
  • Models, Theoretical
  • Neoplasm Recurrence, Local/drug therapy
  • Precision Medicine
  • Tumor Cells, Cultured

Fingerprint

Dive into the research topics of 'Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies'. Together they form a unique fingerprint.

Cite this