Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface

E Michael Danielsen

9 Citations (Scopus)

Abstract

The small intestinal brush border is a specialized cell membrane that needs to withstand the solubilizing effect of bile salts during assimilation of dietary nutrients and to achieve detergent resistance; it is highly enriched in glycolipids organized in lipid raft microdomains. In the present work, the fluorescent lipophilic probes FM 1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide), FM 4-64 (N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino) phenyl)hexatrienyl)pyridinium dibromide), TMA-DPH (1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate), and CellMask Orange plasma membrane stain were used to study endocytosis from the enterocyte brush border of organ-cultured porcine mucosal explants. All the dyes readily incorporated into the brush border but were not detectably endocytosed by 5 min, indicating a slow uptake compared with other cell types. At later time points, FM 1-43 clearly appeared in distinct punctae in the terminal web region, previously shown to represent early endosomes (TWEEs). In contrast, the other dyes were relatively "endocytosis resistant" to varying degrees for periods up to 2 h, indicating an active sorting of lipids in the brush border prior to internalization. For some of the dyes, a diphenylhexatriene motif in the lipophilic tail seemed to confer the relative endocytosis resistance. Lipid sorting by selective endocytosis therefore may be a process in the enterocytes aimed to generate and maintain a unique lipid composition in the brush border.

Original languageEnglish
JournalHistochemistry and Cell Biology
Volume143
Issue number5
Pages (from-to)545-556
Number of pages12
ISSN0948-6143
DOIs
Publication statusPublished - 8 Apr 2015

Fingerprint

Dive into the research topics of 'Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface'. Together they form a unique fingerprint.

Cite this