TY - JOUR
T1 - Prenatal Phthalate, Perfluoroalkyl Acid, and Organochlorine Exposures and Term Birth Weight in Three Birth Cohorts
T2 - Multi-Pollutant Models Based on Elastic Net Regression
AU - Lenters, Virissa
AU - Portengen, Lützen
AU - Rignell-Hydbom, Anna
AU - Jönsson, Bo A G
AU - Lindh, Christian H
AU - Piersma, Aldert H
AU - Toft, Gunnar
AU - Bonde, Jens Peter
AU - Heederik, Dick
AU - Rylander, Lars
AU - Vermeulen, Roel
PY - 2016/3
Y1 - 2016/3
N2 - Background: Some legacy and emerging environmental contaminants are suspected risk factors for intrauterine growth restriction. However, the evidence is equivocal, in part due to difficulties in disentangling the effects of mixtures. Objectives: We assessed associations between multiple correlated biomarkers of environmental exposure and birth weight. Methods: We evaluated a cohort of 1,250 term (≥ 37 weeks gestation) singleton infants, born to 513 mothers from Greenland, 180 from Poland, and 557 from Ukraine, who were recruited during antenatal care visits in 2002‒2004. Secondary metabolites of diethylhexyl and diisononyl phthalates (DEHP, DiNP), eight perfluoroalkyl acids, and organochlorines (PCB-153 and p,p´‑DDE) were quantifiable in 72‒100% of maternal serum samples. We assessed associations between exposures and term birth weight, adjusting for co-exposures and covariates, including prepregnancy body mass index. To identify independent associations, we applied the elastic net penalty to linear regression models. Results: Two phthalate metabolites (MEHHP, MOiNP), perfluorooctanoic acid (PFOA), and p,p´-DDE were most consistently predictive of term birth weight based on elastic net penalty regression. In an adjusted, unpenalized regression model of the four exposures, 2-SD increases in natural log–transformed MEHHP, PFOA, and p,p´-DDE were associated with lower birth weight: –87 g (95% CI: –137, –340 per 1.70 ng/mL), –43 g (95% CI: –108, 23 per 1.18 ng/mL), and –135 g (95% CI: –192, –78 per 1.82 ng/g lipid), respectively; and MOiNP was associated with higher birth weight (46 g; 95% CI: –5, 97 per 2.22 ng/mL). Conclusions: This study suggests that several of the environmental contaminants, belonging to three chemical classes, may be independently associated with impaired fetal growth. These results warrant follow-up in other cohorts.
AB - Background: Some legacy and emerging environmental contaminants are suspected risk factors for intrauterine growth restriction. However, the evidence is equivocal, in part due to difficulties in disentangling the effects of mixtures. Objectives: We assessed associations between multiple correlated biomarkers of environmental exposure and birth weight. Methods: We evaluated a cohort of 1,250 term (≥ 37 weeks gestation) singleton infants, born to 513 mothers from Greenland, 180 from Poland, and 557 from Ukraine, who were recruited during antenatal care visits in 2002‒2004. Secondary metabolites of diethylhexyl and diisononyl phthalates (DEHP, DiNP), eight perfluoroalkyl acids, and organochlorines (PCB-153 and p,p´‑DDE) were quantifiable in 72‒100% of maternal serum samples. We assessed associations between exposures and term birth weight, adjusting for co-exposures and covariates, including prepregnancy body mass index. To identify independent associations, we applied the elastic net penalty to linear regression models. Results: Two phthalate metabolites (MEHHP, MOiNP), perfluorooctanoic acid (PFOA), and p,p´-DDE were most consistently predictive of term birth weight based on elastic net penalty regression. In an adjusted, unpenalized regression model of the four exposures, 2-SD increases in natural log–transformed MEHHP, PFOA, and p,p´-DDE were associated with lower birth weight: –87 g (95% CI: –137, –340 per 1.70 ng/mL), –43 g (95% CI: –108, 23 per 1.18 ng/mL), and –135 g (95% CI: –192, –78 per 1.82 ng/g lipid), respectively; and MOiNP was associated with higher birth weight (46 g; 95% CI: –5, 97 per 2.22 ng/mL). Conclusions: This study suggests that several of the environmental contaminants, belonging to three chemical classes, may be independently associated with impaired fetal growth. These results warrant follow-up in other cohorts.
U2 - 10.1289/ehp.1408933
DO - 10.1289/ehp.1408933
M3 - Journal article
C2 - 26115335
SN - 0091-6765
VL - 124
SP - 365
EP - 372
JO - Environmental Health Perspectives
JF - Environmental Health Perspectives
IS - 3
ER -