TY - JOUR
T1 - Peritumoral brain edema in angiomatous supratentorial meningiomas
T2 - an investigation of the vascular endothelial growth factor A pathway
AU - Nassehi, Damoun
AU - Sørensen, Lars Peter
AU - Dyrbye, Henrik
AU - Thomsen, Carsten
AU - Juhler, Marianne
AU - Laursen, Henning
AU - Broholm, Helle
PY - 2013/11
Y1 - 2013/11
N2 - The aim of this work was to study the vascular endothelial growth factor A (VEGF-A) pathway and peritumoral brain edema (PTBE) through comparison of non-angiomatous and angiomatous meningiomas. Meningiomas are common intracranial tumors, which often have PTBE. VEGF-A is an integral part of PTBE formation and angiogenesis, and the capillary-rich angiomatous meningiomas are known for their PTBE. The VEGF-A receptor VEGFR-2 is responsible for the angiogenic effect of VEGF-A on endothelial cells, which is enhanced by the co-receptor neuropilin-1. Forty non-angiomatous, 22 angiomatous meningiomas, and 10 control tissue samples were collected for the study. Magnetic resonance images were available for 40 non-angiomatous and 10 angiomatous meningiomas. Tissue sections were immunostained for CD34, MIB-1, estrogen- and progesterone receptors. ELISA, chemiluminescence, and RT-qPCR were used for VEGF-A, VEGFR-2, and neuropilin-1 protein and mRNA quantification. Angiomatous meningiomas had larger PTBE (695 vs 218 cm3, p = 0.0045) and longer capillary length (3614 vs 605 mm/mm3, p < 0.0001). VEGF-A mRNA, neuropilin-1 mRNA, and VEGFR-2 protein levels were higher in angiomatous meningiomas independently of the capillary length (p < 0.05). Neuropilin-1 protein levels were lower in angiomatous meningiomas (p < 0.0001). The VEGF-A pathway and tumor capillary length may be essential for PTBE-formation in meningiomas. Further investigations of this pathway could lead to earlier therapy and targeted pharmacological treatment options.
AB - The aim of this work was to study the vascular endothelial growth factor A (VEGF-A) pathway and peritumoral brain edema (PTBE) through comparison of non-angiomatous and angiomatous meningiomas. Meningiomas are common intracranial tumors, which often have PTBE. VEGF-A is an integral part of PTBE formation and angiogenesis, and the capillary-rich angiomatous meningiomas are known for their PTBE. The VEGF-A receptor VEGFR-2 is responsible for the angiogenic effect of VEGF-A on endothelial cells, which is enhanced by the co-receptor neuropilin-1. Forty non-angiomatous, 22 angiomatous meningiomas, and 10 control tissue samples were collected for the study. Magnetic resonance images were available for 40 non-angiomatous and 10 angiomatous meningiomas. Tissue sections were immunostained for CD34, MIB-1, estrogen- and progesterone receptors. ELISA, chemiluminescence, and RT-qPCR were used for VEGF-A, VEGFR-2, and neuropilin-1 protein and mRNA quantification. Angiomatous meningiomas had larger PTBE (695 vs 218 cm3, p = 0.0045) and longer capillary length (3614 vs 605 mm/mm3, p < 0.0001). VEGF-A mRNA, neuropilin-1 mRNA, and VEGFR-2 protein levels were higher in angiomatous meningiomas independently of the capillary length (p < 0.05). Neuropilin-1 protein levels were lower in angiomatous meningiomas (p < 0.0001). The VEGF-A pathway and tumor capillary length may be essential for PTBE-formation in meningiomas. Further investigations of this pathway could lead to earlier therapy and targeted pharmacological treatment options.
U2 - 10.1111/apm.12052
DO - 10.1111/apm.12052
M3 - Journal article
C2 - 23398358
SN - 0903-465X
VL - 121
SP - 1025
EP - 1036
JO - APMIS. Supplementum
JF - APMIS. Supplementum
IS - 11
ER -