TY - JOUR
T1 - Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling
AU - Manfè, Valentina
AU - Kochoyan, Artur
AU - Bock, Elisabeth
AU - Berezin, Vladimir
PY - 2010/7
Y1 - 2010/7
N2 - Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic biologic actions by binding, dimerizing, and activating FGF receptors (FGFRs). The present study reports the physiologic impact of various FGF2-FGFR1 contact sites employing three different synthetic peptides, termed canofins, designed based on structural analysis of the interactions between FGF2 and FGFR1. Canofins mimic the cognate ligand interaction with the receptor and preserve the neuritogenic and neuroprotective properties of FGF2. Canofins were shown by surface plasmon resonance analysis to bind to FGFR1 and promote receptor activation. However, FGF2-induced receptor phosphorylation was inhibited by canofins, indicating that canofins are partial FGFR agonists. Furthermore, canofins were demonstrated to induce neuronal differentiation determined by neurite outgrowth from cerebellar granule neurons, and this effect was dependent on FGFR activation. Additionally, canofins acted as neuroprotectants, promoting survival of cerebellar granule neurons induced to undergo apoptosis. Our results suggest that canofins mirror the effect of specific interaction sites in FGF2 for FGFR. Thus, canofins are valuable pharmacological tools to study the functional roles of specific molecular interactions of FGF2 with FGFR.
AB - Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic biologic actions by binding, dimerizing, and activating FGF receptors (FGFRs). The present study reports the physiologic impact of various FGF2-FGFR1 contact sites employing three different synthetic peptides, termed canofins, designed based on structural analysis of the interactions between FGF2 and FGFR1. Canofins mimic the cognate ligand interaction with the receptor and preserve the neuritogenic and neuroprotective properties of FGF2. Canofins were shown by surface plasmon resonance analysis to bind to FGFR1 and promote receptor activation. However, FGF2-induced receptor phosphorylation was inhibited by canofins, indicating that canofins are partial FGFR agonists. Furthermore, canofins were demonstrated to induce neuronal differentiation determined by neurite outgrowth from cerebellar granule neurons, and this effect was dependent on FGFR activation. Additionally, canofins acted as neuroprotectants, promoting survival of cerebellar granule neurons induced to undergo apoptosis. Our results suggest that canofins mirror the effect of specific interaction sites in FGF2 for FGFR. Thus, canofins are valuable pharmacological tools to study the functional roles of specific molecular interactions of FGF2 with FGFR.
U2 - 10.1111/j.1471-4159.2010.06718.x
DO - 10.1111/j.1471-4159.2010.06718.x
M3 - Journal article
C2 - 20374425
SN - 0022-3042
VL - 114
SP - 74
EP - 86
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 1
ER -