On the Regularization of the Kepler Problem

Gert Heckman, Tim de Laat

8 Citations (Scopus)

Abstract

In 1970, Moser showed that the Hamiltonian flow of the Kepler problem in ℝn for a fixed negative energy level is regularized via stereographic projection to the geodesic flow on the punctured cotangent bundle of the unit sphere in ℝn+1, in such a way that the time parameter in the Kepler problem and the arc length for the geodesic flow are related by the Kepler equation. Ligon and Schaaf gave an alternative regularization of the Kepler problem, treating the whole negative energy part of the phase space at once, such that the Kepler flow and the Delaunay flow on the punctured cotangent bundle of the sphere become related by a canonical transformation. The rather elaborate calculations of Ligon and Schaaf were simplified by Cushman and Duistermaat. In this paper, we derive the Ligon-Schaaf regularization as an almost trivial adaptation of the Moser regularization. As a consequence, the hidden symmetry of the Kepler problem becomes naturally visible.

Original languageEnglish
JournalJournal of Symplectic Geometry
Volume10
Issue number3
Pages (from-to)463-474
ISSN1527-5256
Publication statusPublished - Mar 2012

Fingerprint

Dive into the research topics of 'On the Regularization of the Kepler Problem'. Together they form a unique fingerprint.

Cite this