On the genealogy of a sample of neutral rare alleles

Carsten Wiuf*

*Corresponding author for this work
11 Citations (Scopus)

Abstract

This paper concerns the genealogical structure of a sample of chromosomes sharing a neutral rare allele. We suppose that the mutation giving rise to the allele has only happened once in the history of the entire population, and that the allele is of known frequency q in the population. Within a coalescent framework C. Wiuf and P. Donnelly (1999, Theor. Popul. Biol. 56, 183-201) derived an exact analysis of the conditional genealogy but it is inconvenient for applications. Here, we develop an approximation to the exact distribution of the conditional genealogy, including an approximation to the distribution of the time at which the mutation arose. The approximations are accurate for frequencies q < 5-10%. In addition, a simple and fast simulation scheme is constructed. We consider a demography parameterized by a d-dimensional vector α = (α1,..., α(d)). It is shown that the conditional genealogy and the age of the mutation have distributions that depend on a = qα and q only, and that the effect of q is a linear scaling of times in the genealogy; if q is doubled, the lengths of all branches in the genealogy are doubled. The theory is exemplified in two different demographies of some interest in the study of human evolution: (1) a population of constant size and (2) a population of exponentially decreasing size (going backward in time). (C) 2000 Academic Press.

Original languageEnglish
JournalTheoretical Population Biology
Volume58
Issue number1
Pages (from-to)61-75
Number of pages15
ISSN0040-5809
DOIs
Publication statusPublished - 1 Jan 2000
Externally publishedYes

Keywords

  • Age of mutation
  • Coalescent theory
  • Genealogy
  • Rare allele
  • Sampling scheme

Fingerprint

Dive into the research topics of 'On the genealogy of a sample of neutral rare alleles'. Together they form a unique fingerprint.

Cite this