Local appearance features for robust MRI brain structure segmentation across scanning protocols

H.C. Achterberg, Dirk H. J. Poot, Fedde van der Lijn, Meike W. Vernooij, M. Arfan Ikram, Wiro J. Niessen, Marleen de Bruijne

2 Citations (Scopus)

Abstract

Segmentation of brain structures in magnetic resonance images is an important task in neuro image analysis. Several papers on this topic have shown the benefit of supervised classification based on local appearance features, often combined with atlas-based approaches. These methods require a representative annotated training set and therefore often do not perform well if the target image is acquired on a different scanner or with a different acquisition protocol than the training images. Assuming that the appearance of the brain is determined by the underlying brain tissue distribution and that brain tissue classification can be performed robustly for images obtained with different protocols, we propose to derive appearance features from brain-tissue density maps instead of directly from the MR images. We evaluated this approach on hippocampus segmentation in two sets of images acquired with substantially different imaging protocols and on different scanners. While a combination of conventional appearance features trained on data from a different scanner with multiatlas segmentation performed poorly with an average Dice overlap of 0.698, the local appearance model based on the new acquisition-independent features significantly improved (0.783) over atlas-based segmentation alone (0.728).
Original languageEnglish
Title of host publicationMedical Imaging 2013 : image processing
EditorsSebastien Ourselin, David R. Haynor
Number of pages7
PublisherSPIE - International Society for Optical Engineering
Publication date2013
Article number866905
ISBN (Print) 9780819494436
DOIs
Publication statusPublished - 2013
EventMedical Imaging 2013: Image Processing - Lake Buena Vista, United States
Duration: 10 Feb 201312 Feb 2013

Conference

ConferenceMedical Imaging 2013
Country/TerritoryUnited States
CityLake Buena Vista
Period10/02/201312/02/2013
SeriesProgress in Biomedical Optics and Imaging
Number36
Volume14
ISSN1605-7422

Fingerprint

Dive into the research topics of 'Local appearance features for robust MRI brain structure segmentation across scanning protocols'. Together they form a unique fingerprint.

Cite this