Abstract
The internal architecture of raised beach ridge and associated swale deposits on Anholt records an ancient sea level. The Holocene beach ridges form part of a progradational beach ridge plain, which has been interpreted to have formed during an isostatic uplift and a relative fall in the sea level over the past 7700. years. The ridges are covered by pebbles and cobbles and commonly show evidence of deflation. Material presumably removed from the beach ridges and adjacent swales form the present dune forms on Anholt. Ground-penetrating radar (GPR) reflection lines have been collected with 250. MHz shielded antennae across the fossil ridge and swale structures. The signals penetrate the subsurface to a maximum depth of ~. 10. m below the fossil features. The GPR data resolve the internal architecture of the beach ridges and swales with a vertical resolution of about 0.1. m. GPR mapping indicates that the Holocene beach ridges are composed of seaward-dipping beachface deposits as well as minor amounts of inland dipping deposits of wash-over origin. The beachface deposits downlap on underlying shoreface deposits, and we use these surfaces as markers of a relative palaeo-sea level. The new data indicate that the highest relative sea level at about 8.5. m was reached 6500. years ago; 700. years later the relative sea level had dropped 0.7. m indicating a change in the relative sea level around 1. mm/year. This fall in the relative sea level most likely records the influence of an isostatic rebound causing younger beach ridge deposits to indicate lower sea levels.
Original language | English |
---|---|
Journal | Sedimentary Geology |
Volume | 223 |
Pages (from-to) | 281-290 |
ISSN | 0037-0738 |
Publication status | Published - Jan 2010 |