Independent screening for single-index hazard rate models with ultrahigh dimensional features

Anders Gorst-Rasmussen*, Thomas Scheike

*Corresponding author for this work
51 Citations (Scopus)

Abstract

In data sets with many more features than observations, independent screening based on all univariate regression models leads to a computationally convenient variable selection method. Recent efforts have shown that, in the case of generalized linear models, independent screening may suffice to capture all relevant features with high probability, even in ultrahigh dimension. It is unclear whether this formal sure screening property is attainable when the response is a right-censored survival time. We propose a computationally very efficient independent screening method for survival data which can be viewed as the natural survival equivalent of correlation screening. We state conditions under which the method admits the sure screening property within a class of single-index hazard rate models with ultrahigh dimensional features and describe the generally detrimental effect of censoring on performance. An iterative variant of the method is also described which combines screening with penalized regression to handle more complex feature covariance structures. The methodology is evaluated through simulation studies and through application to a real gene expression data set.

Original languageEnglish
JournalJournal of the Royal Statistical Society, Series B (Statistical Methodology)
Volume75
Issue number2
Pages (from-to)217-245
Number of pages29
ISSN1369-7412
DOIs
Publication statusPublished - 1 Mar 2013

Keywords

  • Additive hazards model
  • Independent screening
  • Survival data
  • Ultrahigh dimension
  • Variable selection

Fingerprint

Dive into the research topics of 'Independent screening for single-index hazard rate models with ultrahigh dimensional features'. Together they form a unique fingerprint.

Cite this