Harmonic analysis on quantum complex hyperbolic spaces

Olga Bershtein, Ye. Kolisnyk

Abstract

In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace-Beltrami operator and its radial part. The latter appear to be second order q-difference operator, whose eigen functions are related to the Al-Salam-Chihara polynomials. We prove a Plancherel type theorem for it.

Original languageEnglish
JournalSIGMA
Volume7
Issue number078
Publication statusPublished - 2011

Fingerprint

Dive into the research topics of 'Harmonic analysis on quantum complex hyperbolic spaces'. Together they form a unique fingerprint.

Cite this