Gait transition and oxygen consumption in swimming striped surfperch Embiotoca lateralis Agassiz

M. Cannas, J. Schaefer, P. Domenici, J. F. Steffensen

20 Citations (Scopus)

Abstract

A flow-through respirometer and swim tunnel was used to estimate the gait transition speed (Up-c) of striped surfperch Embiotoca lateralis, a labriform swimmer, and to investigate metabolic costs associated with gait transition. The Up-c was defined as the lowest speed at which fish decrease the use of pectoral fins significantly. While the tail was first recruited for manoeuvring at relatively low swimming speeds, the use of the tail at these low speeds [as low as 0·75 body (fork) lengths s-1, LF s-1) was rare (<10% of the total time). Tail movements at these low speeds appeared to be associated with occasional slow manoeuvres rather than providing power. As speed was increased beyond Up-c, pectoral fin (PF) frequencies kept increasing when the tail was not used, while they did not when PF locomotion was aided by the tail. At these high speeds, the tail was employed for 40-50% of the time, either in addition to pectoral fins or during burst-and-coast mode. Oxygen consumption increased exponentially with swimming speeds up to gait transition, and then levelled off. Similarly, cost of transport (CT) decreased with increasing speed, and then levelled off near Up-c. When speeds =Up-c are considered, CT is higher than the theoretical curve extrapolated for PF swimming, suggesting that PF swimming appears to be higher energetically less costly than undulatory swimming using the tail.
Original languageEnglish
JournalJournal of Fish Biology
Volume69
Issue number6
Pages (from-to)1612-1625
ISSN0022-1112
DOIs
Publication statusPublished - 2006

Fingerprint

Dive into the research topics of 'Gait transition and oxygen consumption in swimming striped surfperch Embiotoca lateralis Agassiz'. Together they form a unique fingerprint.

Cite this