TY - JOUR
T1 - Fluorescence spectroscopy in process analytical technology (PAT)
T2 - simultaneous quantification of two active pharmaceutical ingredients in a tablet formulation
AU - Warnecke, Solveig
AU - Rinnan, Åsmund
AU - Allesø, Morten
AU - Engelsen, Søren Balling
PY - 2015/3/1
Y1 - 2015/3/1
N2 - Many pharmaceuticals include highly potent active pharmaceutical ingredients (API), which only require a small dosage to obtain the desired therapeutic effect. This leads to a challenge for quantification of the API using process analytical technology, since the standard nondestructive measurement technique, near-infrared spectroscopy, is not able to quantify below 1% (weight/weight (w/w)) API content. In formulations with more than one API, this challenge is further increased. The purpose of this study is to scrutinize the potential of fluorescence spectroscopy for the simultaneous quantification of two APIs: flupentixol (FLU) in low dosage (0.208-0.625% w/w free base) and melitracen (MEL) (4.17-12.5% w/w free base) in a tablet formulation. Despite internal quenching between the ingredients and the two APIs, this paper demonstrates that it is possible to establish calibrations using partial least squares (PLS) regression on unfolded fluorescence landscapes with a root mean square error of prediction and relative error of 0.038% (w/w) and 9.1%, for FLU and 0.344% (w/w) and 4.1% for MEL, respectively.
AB - Many pharmaceuticals include highly potent active pharmaceutical ingredients (API), which only require a small dosage to obtain the desired therapeutic effect. This leads to a challenge for quantification of the API using process analytical technology, since the standard nondestructive measurement technique, near-infrared spectroscopy, is not able to quantify below 1% (weight/weight (w/w)) API content. In formulations with more than one API, this challenge is further increased. The purpose of this study is to scrutinize the potential of fluorescence spectroscopy for the simultaneous quantification of two APIs: flupentixol (FLU) in low dosage (0.208-0.625% w/w free base) and melitracen (MEL) (4.17-12.5% w/w free base) in a tablet formulation. Despite internal quenching between the ingredients and the two APIs, this paper demonstrates that it is possible to establish calibrations using partial least squares (PLS) regression on unfolded fluorescence landscapes with a root mean square error of prediction and relative error of 0.038% (w/w) and 9.1%, for FLU and 0.344% (w/w) and 4.1% for MEL, respectively.
U2 - 10.1366/14-07470
DO - 10.1366/14-07470
M3 - Journal article
C2 - 25760291
SN - 0003-7028
VL - 69
SP - 323
EP - 331
JO - Applied Spectroscopy
JF - Applied Spectroscopy
IS - 3
ER -