Events per variable for risk differences and relative risks using pseudo-observations

Stefan Nygaard Hansen, Per Kragh Andersen, Erik Thorlund Parner

14 Citations (Scopus)

Abstract

A method based on pseudo-observations has been proposed for direct regression modeling of functionals of interest with right-censored data, including the survival function, the restricted mean and the cumulative incidence function in competing risks. The models, once the pseudo-observations have been computed, can be fitted using standard generalized estimating equation software. Regression models can however yield problematic results if the number of covariates is large in relation to the number of events observed. Guidelines of events per variable are often used in practice. These rules of thumb for the number of events per variable have primarily been established based on simulation studies for the logistic regression model and Cox regression model. In this paper we conduct a simulation study to examine the small sample behavior of the pseudo-observation method to estimate risk differences and relative risks for right-censored data. We investigate how coverage probabilities and relative bias of the pseudo-observation estimator interact with sample size, number of variables and average number of events per variable.

Original languageEnglish
JournalLifetime Data Analysis
Volume20
Issue number4
Pages (from-to)584-98
Number of pages15
ISSN1380-7870
DOIs
Publication statusPublished - Oct 2014

Fingerprint

Dive into the research topics of 'Events per variable for risk differences and relative risks using pseudo-observations'. Together they form a unique fingerprint.

Cite this