Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose-5-phosphate binding

Martin Willemoës, Dan Nilsson, Bjarne Hove-Jensen

    15 Citations (Scopus)

    Abstract

    The three conserved aspartic acid residues of the 5-phospho-d-ribosyl a-1-diphosphate binding site (213-GRDCVLVDDMIDTGGT-228) of Escherichia coli phosphoribosyl diphosphate synthetase were studied by analysis of the mutant enzymes D220E, D220F, D221A, D224A, and D224S. The mutant enzymes showed an increase in KM for ribose 5-phosphate in the presence of at least one of the divalent metal ions Mg2+, Mn2+, Co2+, or Cd2+, with the most dramatic changes revealed by the D220E and D220F enzymes in the presence of Co2+ and the D221A enzyme in the presence of Mn2+ or Co2+. The D220F and D221A enzymes both showed large decreases in Vapp in the presence of the various divalent metal ions, except for the D221A enzyme in the presence of Co2+. Vapp of the D220E enzyme was similar to that of the wild-type enzyme in the presence of Mg2+, Mn2+, or Cd2+, whereas the Vapp was increased in the presence of Co2+. Vapp values of the D224A and D224S enzymes were lowered to 10-15-fold and 3-4-fold in the presence of Mg2+ or Mn2+, respectively, whereas Vapp was similar to that of the wild-type and KM for Rib-5-P was increased 4-fold in the presence of Cd2+. The changes in KM for ribose 5-phosphate and Vapp of the mutant enzymes were dependent on the metal ion present, suggesting a function of the investigated aspartic acid residues both in the binding of ribose 5-phosphate, possibly via a divalent metal ion, and in the interaction with a divalent metal ion during catalysis.
    Original languageEnglish
    JournalBiochemistry
    Volume35
    Issue number25
    Pages (from-to)8181-8186
    ISSN0006-2960
    DOIs
    Publication statusPublished - 1996

    Fingerprint

    Dive into the research topics of 'Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose-5-phosphate binding'. Together they form a unique fingerprint.

    Cite this