TY - JOUR
T1 - Effect of resource availability on bacterial community responses to increased temperature
AU - Degerman, R
AU - Dinasquet, Julie Vanessa
AU - Riemann, Lasse
AU - Sjöstedt de Luna, S
AU - Andersson, A
PY - 2012
Y1 - 2012
N2 - Climate change is predicted to cause higher temperatures and increased precipitation, resulting in increased inflow of nutrients to coastal waters in northern Europe. This has been assumed to increase the overall heterotrophy, including enhanced bacterial growth. However, the relative importance of temperature, resource availability and bacterial community composition for the bacterial growth response is poorly understood. In the present study, we investigated effects of increased temperature on bacterial growth in waters supplemented with different nutrient concentrations and inoculated with microbial communities from distinct seasonal periods. Seven experiments were performed in the northern Baltic Sea spanning an entire annual cycle. In each experiment, bacterioplankton were exposed to 2 temperature regimes (in situ and in situ + 4°C) and 5 nutrient concentrations. Generally, elevated temperature and higher nutrient levels caused an increase in the bacterial growth rate and a shortening of the response time (lag phase). However, at the lowest nutrient concentration, bacterial growth was low at all tested temperatures, implying a stronger dependence on resource availability than on temperature for bacterial growth. Furthermore, data indicated that different bacterial assemblages had varying temperature responses and that community composition was strongly affected by the combination of high nutrient addition and high temperature. These results support the concern that climate change will promote heterotrophy in aquatic systems, where nutrient levels will increase considerably. In such environments, the bacterial community composition will change, their growth rates will increase, and their response time will be shortened compared to the present situation.
AB - Climate change is predicted to cause higher temperatures and increased precipitation, resulting in increased inflow of nutrients to coastal waters in northern Europe. This has been assumed to increase the overall heterotrophy, including enhanced bacterial growth. However, the relative importance of temperature, resource availability and bacterial community composition for the bacterial growth response is poorly understood. In the present study, we investigated effects of increased temperature on bacterial growth in waters supplemented with different nutrient concentrations and inoculated with microbial communities from distinct seasonal periods. Seven experiments were performed in the northern Baltic Sea spanning an entire annual cycle. In each experiment, bacterioplankton were exposed to 2 temperature regimes (in situ and in situ + 4°C) and 5 nutrient concentrations. Generally, elevated temperature and higher nutrient levels caused an increase in the bacterial growth rate and a shortening of the response time (lag phase). However, at the lowest nutrient concentration, bacterial growth was low at all tested temperatures, implying a stronger dependence on resource availability than on temperature for bacterial growth. Furthermore, data indicated that different bacterial assemblages had varying temperature responses and that community composition was strongly affected by the combination of high nutrient addition and high temperature. These results support the concern that climate change will promote heterotrophy in aquatic systems, where nutrient levels will increase considerably. In such environments, the bacterial community composition will change, their growth rates will increase, and their response time will be shortened compared to the present situation.
U2 - 10.3354/ame01609
DO - 10.3354/ame01609
M3 - Journal article
SN - 0948-3055
VL - 68
SP - 131
EP - 142
JO - Aquatic Microbial Ecology
JF - Aquatic Microbial Ecology
ER -