Detecting Sample Misidentifications in Genetic Association Studies

2 Citations (Scopus)

Abstract

Genetic association studies require that the genotype data from a given person can be correctly linked to the phenotype data from the same person. However, sample misidentification errors sometimes happen, whereby the link becomes invalid for some of the subjects in a study. This can have substantial consequences in terms of power to detect truly associated variants. In family-based studies, Mendelian inconsistencies can be used to detect sample misidentification. Genome-wide association studies (GWAS), however, typically use unrelated individuals, making error detection more problematic. Here we present a method for identifying potential sample misidentifications in GWAS and other genetic association studies building on ideas from forensic sciences. A widely used ad-hoc method for error detection is to check if the sex of an individual matches its X-linked genotype. We generalize this idea to less stringent associations between known genotypes and phenotypes, and show that if several known associations are combined, the power to detect misidentifications increases substantially. Individuals with an unlikely set of phenotypes given their genotypes are flagged as potential errors. We provide analytical and simulation results comparing the odds that the genotype and phenotype are both from the same individual for different numbers of available genotype-p henotype associations and for different information content of the associations. Our method has good sensitivity and specificity with as few as ten moderately informative genotype-phenotype associations. We apply the method to GWAS data from the Danish National Birth Cohort.

Original languageEnglish
Article number13
JournalStatistical Applications in Genetics and Molecular Biology
Volume11
Issue number3
Pages (from-to)142-147
Number of pages6
ISSN1544-6115
Publication statusPublished - 2012

Fingerprint

Dive into the research topics of 'Detecting Sample Misidentifications in Genetic Association Studies'. Together they form a unique fingerprint.

Cite this