Convergence properties of the degree distribution of some growing network models

Oskar Hagberg, Carsten Wiuf*

*Corresponding author for this work
12 Citations (Scopus)

Abstract

In this article we study a class of randomly grown graphs that includes some preferential attachment and uniform attachment models, as well as some evolving graph models that have been discussed previously in the literature. The degree distribution is assumed to form a Markov chain; this gives a particularly simple form for a stochastic recursion of the degree distribution. We show that for this class of models the empirical degree distribution tends almost surely and in norm to the expected degree distribution as the size of the graph grows to infinity and we provide a simple asymptotic expression for the expected degree distribution. Convergence of the empirical degree distribution has consequences for statistical analysis of network data in that it allows the full data to be summarized by the degree distribution of the nodes without losing the ability to obtain consistent estimates of parameters describing the network.

Original languageEnglish
JournalBulletin of Mathematical Biology
Volume68
Issue number6
Pages (from-to)1275-1291
Number of pages17
ISSN0092-8240
DOIs
Publication statusPublished - 1 Aug 2006
Externally publishedYes

Keywords

  • Biological network
  • Markov chain
  • Network model
  • Randomly grown graphs

Fingerprint

Dive into the research topics of 'Convergence properties of the degree distribution of some growing network models'. Together they form a unique fingerprint.

Cite this