Competing risks with missing covariates: effect of haplotypematch on hematopoietic cell transplant patients

TH Scheike, MJ Maiers, V Rocha, Mei-Jie Zhang

2 Citations (Scopus)

Abstract

In this paper we consider a problem from hematopoietic cell transplant (HCT) studies where there is interest on assessing the effect of haplotype match for donor and patient on the cumulative incidence function for a right censored competing risks data. For the HCT study, donor's and patient's genotype are fully observed and matched but their haplotypes are missing. In this paper we describe how to deal with missing covariates of each individual for competing risks data. We suggest a procedure for estimating the cumulative incidence functions for a flexible class of regression models when there are missing data, and establish the large sample properties. Small sample properties are investigated using simulations in a setting that mimics the motivating haplotype matching problem. The proposed approach is then applied to the HCT study.

Original languageUndefined/Unknown
JournalLifetime Data Analysis
Volume19
Issue number1
Pages (from-to)19-32
Number of pages14
ISSN1380-7870
Publication statusPublished - Dec 2012

Cite this