Abstract
Sensory gating is the brain's ability to filter out irrelevant information before it reaches high levels of conscious processing. In the current study we aimed to investigate the involvement of the noradrenergic and dopaminergic neurotransmitter systems in sensory gating. Furthermore, we investigated cross-species reliability by comparing effects in both healthy humans and rats, while keeping all experimental conditions as similar as possible between the species. The design of the human experiment (n=21) was a double-blind, placebo-controlled, cross-over study where sensory gating was assessed following a dose of either reboxetine (8 mg), haloperidol (2 mg), their combination or placebo at four separate visits. Similarly in the animal experiment sensory gating was assessed in rats, (n=22) following a dose of reboxetine (2 mg/kg), haloperidol (0.08 mg/kg), their combination or placebo. The sensory gating paradigms in both experiments were identical. In humans, we found significantly reduced P50 suppression following separate administration of reboxetine or haloperidol, while their combined administration did not reach statistical significance compared with placebo. In the rats, we found a similar significant reduction of sensory gating (N40) following treatment with haloperidol and the combination of haloperidol and reboxetine, but not with separate reboxetine treatment, compared with placebo. Our study indicates that even when experimental conditions are kept as similar as possible, direct human to rat cross-species translation of pharmacological effects on sensory gating is challenging, which calls for more focussed research in this important translational area.
Original language | English |
---|---|
Journal | Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology |
Volume | 41 |
Issue number | 2 |
Pages (from-to) | 638-45 |
Number of pages | 8 |
ISSN | 0893-133X |
DOIs | |
Publication status | Published - 1 Jan 2016 |
Keywords
- Journal Article