TY - JOUR
T1 - Comparative effects of deficit irrigation and alternate partial root-zone irrigation on xylem pH, ABA and ionic concentrations in tomatoes
AU - Wang, Yaosheng
AU - Liu, Fulai
AU - Jensen, Christian Richardt
PY - 2012/3
Y1 - 2012/3
N2 - Comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on xylem pH, ABA, and ionic concentrations of tomato (Lycopersicon esculentum L.) plants were investigated in two split-root pot experiments. Results showed that PRI plants had similar or significantly higher xylem pH, which was increased by 0.2 units relative to DI plants. Nitrate and total ionic concentrations (cations+anions), and the proportion of cations influenced xylem pH such that xylem pH increases as nitrate and total ionic concentrations decrease, and the proportion of cations increases. In most cases, the xylem ABA concentration was similar for PRI and DI plants, and a clear association between increases in xylem pH with increasing xylem ABA concentration was only found when the soil water content was relatively low. The concentrations of anions, cations, and the sum of anions and cations in PRI were higher than in the DI treatment when soil water content was relatively high in the wetted soil compartment. However, when water content in both soil compartments of the PRI pots were very low before the next irrigation, the acquisition of nutrients by roots was reduced, resulting in lower concentrations of anions and cations in the PRI than in the DI treatment. It is therefore essential that the soil water content in the wet zone should be maintained relatively high while that in the drying soil zone should not be very low, both conditions are crucial to maintain high soil and plant water status while sustaining ABA signalling of the plants.
AB - Comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on xylem pH, ABA, and ionic concentrations of tomato (Lycopersicon esculentum L.) plants were investigated in two split-root pot experiments. Results showed that PRI plants had similar or significantly higher xylem pH, which was increased by 0.2 units relative to DI plants. Nitrate and total ionic concentrations (cations+anions), and the proportion of cations influenced xylem pH such that xylem pH increases as nitrate and total ionic concentrations decrease, and the proportion of cations increases. In most cases, the xylem ABA concentration was similar for PRI and DI plants, and a clear association between increases in xylem pH with increasing xylem ABA concentration was only found when the soil water content was relatively low. The concentrations of anions, cations, and the sum of anions and cations in PRI were higher than in the DI treatment when soil water content was relatively high in the wetted soil compartment. However, when water content in both soil compartments of the PRI pots were very low before the next irrigation, the acquisition of nutrients by roots was reduced, resulting in lower concentrations of anions and cations in the PRI than in the DI treatment. It is therefore essential that the soil water content in the wet zone should be maintained relatively high while that in the drying soil zone should not be very low, both conditions are crucial to maintain high soil and plant water status while sustaining ABA signalling of the plants.
U2 - 10.1093/jxb/err370
DO - 10.1093/jxb/err370
M3 - Journal article
SN - 0022-0957
VL - 63
SP - 1907
EP - 1917
JO - Journal of Experimental Botany
JF - Journal of Experimental Botany
IS - 5
ER -