Algorithm for finding an interpretable simple neural network solution using PLS

Rasmus Bro*

*Corresponding author for this work
8 Citations (Scopus)

Abstract

This communication describes the combination of a feedforward neural network (NN) with one hidden neuron and partial least squares (PLS) regression. Through training of the neural network with an algorithm that is a combination of a modified simplex, PLS and certain numerical restrictions, one gains an NN solution that has several feasible properties: (i) as in PLS the solution is qualitatively interpretable; (ii) it works faster than or comparably with ordinary training algorithms for neural networks; (iii) it contains the linear solution as a limiting case. Another very important aspect of this training algorithm is the fact that outlier detection as in ordinary PLS is possible through loadings, scores and residuals. The algorithm is used on a simple non‐linear problem concerning fluorescence spectra of white sugar solutions.

Original languageEnglish
JournalJournal of Chemometrics
Volume9
Issue number5
Pages (from-to)423-430
Number of pages8
ISSN0886-9383
DOIs
Publication statusPublished - 1 Jan 1995

Keywords

  • interpretable
  • neural network
  • PLS
  • training

Fingerprint

Dive into the research topics of 'Algorithm for finding an interpretable simple neural network solution using PLS'. Together they form a unique fingerprint.

Cite this