Universal temperature and body-mass scaling of feeding rates

Björn C. Rall, Ulrich Brose, Martin Hartvig, Gregor Kalinkat, Florian Schwarzmüller, Olivera Vucic-Pestic, Owen L. Petchey

237 Citationer (Scopus)

Abstract

Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer-resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer - resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass-and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure.

OriginalsprogEngelsk
TidsskriftPhilosophical Transactions of the Royal Society B: Biological Sciences
Vol/bind367
Udgave nummer1605
Sider (fra-til)2923-2934
Antal sider12
ISSN0962-8436
DOI
StatusUdgivet - 2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'Universal temperature and body-mass scaling of feeding rates'. Sammen danner de et unikt fingeraftryk.

Citationsformater