Uniqueness of non-linear ground states for fractional Laplacians in R

Rupert L. Frank, Enno Lenzmann

207 Citationer (Scopus)

Abstract

We prove uniqueness of ground state solutions Q = Q(|x|) ≥ 0 of the non-linear equation
(−Δ)sQ+Q−Qα+1=0inR,where 0 < s < 1 and 0 < α < 4s/(1−2s) for s<12 and 0 < α < ∞ for s≥12. Here (−Δ) s denotes the fractional Laplacian in one dimension. In particular, we answer affirmatively an open question recently raised by Kenig–Martel–Robbiano and we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for s=12 and α = 1 in [5] for the Benjamin–Ono equation.
As a technical key result in this paper, we show that the associated linearized operator L + = (−Δ) s +1−(α+1)Q α is non-degenerate; i.e., its kernel satisfies ker L + = span{Q′}. This result about L + proves a spectral assumption, which plays a central role for the stability of solitary waves and blowup analysis for non-linear dispersive PDEs with fractional Laplacians, such as the generalized Benjamin–Ono (BO) and Benjamin–Bona–Mahony (BBM) water wave equations.
OriginalsprogEngelsk
TidsskriftActa Mathematica
Vol/bind210
Udgave nummer2
Sider (fra-til)261-318
ISSN0001-5962
DOI
StatusUdgivet - 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Uniqueness of non-linear ground states for fractional Laplacians in R'. Sammen danner de et unikt fingeraftryk.

Citationsformater