@article{144a07d81ac74cd69ca04365d73a3c34,
title = "Type II1 factors satisfying the spatial isomorphism conjecture.",
abstract = "This paper addresses a conjecture in the work by Kadison and Kastler [Kadison RV, Kastler D (1972) Am J Math 94:38-54] that a von Neumann algebra M on a Hilbert space H should be unitarily equivalent to each sufficiently close von Neumann algebra N, and, moreover, the implementing unitary can be chosen to be close to the identity operator. This conjecture is known to be true for amenable von Neumann algebras, and in this paper, we describe classes of nonamenable factors for which the conjecture is valid. These classes are based on tensor products of the hyperfinite II1 factor with crossed products of abelian algebras by suitably chosen discrete groups.",
author = "Jan Cameron and Erik Christensen and Sinclair, {Allan M.} and Smith, {Roger R.} and Stuart White and Wiggins, {Alan D.}",
year = "2012",
month = dec,
day = "11",
language = "English",
volume = "109",
pages = "20338 -- 20343",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
publisher = "The National Academy of Sciences of the United States of America",
number = "5",
}