The mosquito transmission of malaria: the effects of atovaquone-proguanil (Malarone) and chloroquine

S Enosse, G A Butcher, G Margos, J Mendoza, R E Sinden, B Høgh

    23 Citationer (Scopus)

    Abstract

    Despite its recognized importance, the prevention of patients with malaria from continuing to infect mosquitoes after treatment is not always achieved in practice. An inevitable consequence of the prolonged life-span and relative metabolic stasis of the mature gametocytes of Plasmodium falciparum is that they are not cleared by most antimalarials, and few antimalarials block infection in the mosquito vector. Previous research on the constituents of Malarone, a new 'combined antimalarial', suggested that the active components, atovaquone and proguanil, might inhibit infectivity of gametocytes to mosquitoes. We contrast here the impact of atovaquone-proguanil and chloroquine on the transmission of P. falciparum and P. berghei. While chloroquine enhanced infectivity of P. falciparum, atovaquone-proguanil caused a significant reduction. Surprisingly, sporontocidal activity against the rodent parasite persisted long after the levels of the constituent drugs would have been expected to have fallen below effective plasma concentrations on the basis of the established pharmacokinetics of atovaquone and proguanil. The P. berghei model may thus have provided a sensitive bioassay, detecting drug(s) at levels below that normally found with the usual chemical assays.

    OriginalsprogEngelsk
    TidsskriftTransactions of the Royal Society of Tropical Medicine and Hygiene
    Vol/bind94
    Udgave nummer1
    Sider (fra-til)77-82
    Antal sider6
    ISSN0035-9203
    StatusUdgivet - 5 apr. 2000

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'The mosquito transmission of malaria: the effects of atovaquone-proguanil (Malarone) and chloroquine'. Sammen danner de et unikt fingeraftryk.

    Citationsformater