The local structure theorem for real spherical varieties

Friedrich Knop, Bernhard Krötz, Henrik Schlichtkrull

10 Citationer (Scopus)

Abstract

Let G be an algebraic real reductive group and Z a real spherical G -variety, that is, it admits an open orbit for a minimal parabolic subgroup P . We prove a local structure theorem for Z . In the simplest case where Z is homogeneous, the theorem provides an isomorphism of the open P -orbit with a bundle Q×LS . Here Q is a parabolic subgroup with Levi decomposition L⋉U , and S is a homogeneous space for a quotient D=L/Ln of L , where Ln⊆L is normal, such that D is compact modulo center.
OriginalsprogEngelsk
TidsskriftCompositio Mathematica
Vol/bind151
Udgave nummer11
Sider (fra-til)2145-2159
Antal sider15
ISSN0010-437X
DOI
StatusUdgivet - 26 nov. 2015

Fingeraftryk

Dyk ned i forskningsemnerne om 'The local structure theorem for real spherical varieties'. Sammen danner de et unikt fingeraftryk.

Citationsformater