Abstract
Let G
be an algebraic real reductive group and Z
a real spherical G
-variety, that is, it admits an open orbit for a minimal parabolic subgroup P
. We prove a local structure theorem for Z
. In the simplest case where Z
is homogeneous, the theorem provides an isomorphism of the open P
-orbit with a bundle Q×LS
. Here Q
is a parabolic subgroup with Levi decomposition L⋉U
, and S
is a homogeneous space for a quotient D=L/Ln
of L
, where Ln⊆L
is normal, such that D
is compact modulo center.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Compositio Mathematica |
Vol/bind | 151 |
Udgave nummer | 11 |
Sider (fra-til) | 2145-2159 |
Antal sider | 15 |
ISSN | 0010-437X |
DOI | |
Status | Udgivet - 26 nov. 2015 |