The distribution of S-integral points on SL2-orbit closures of binary forms

Sho Tanimoto, James Tanis

1 Citationer (Scopus)

Abstract

We study the distribution of S-integral points on SL2-orbit closures of binary forms and prove an asymptotic formula for the number of S-integral points. This extends a result of Duke, Rudnick and Sarnak. The main ingredients of the proof are the method of mixing developed by Eskin-McMullen and Benoist-Oh, Chambert-Loir-Tschinkel's study of asymptotic volume of height balls and Hassett-Tschinkel's description of log resolutions of {\rm SL}2-orbit closures of binary forms.

OriginalsprogEngelsk
TidsskriftJournal of the London Mathematical Society
Vol/bind92
Udgave nummer3
Sider (fra-til)760-777
Antal sider18
ISSN0024-6107
DOI
StatusUdgivet - 3 feb. 2015

Fingeraftryk

Dyk ned i forskningsemnerne om 'The distribution of S-integral points on SL2-orbit closures of binary forms'. Sammen danner de et unikt fingeraftryk.

Citationsformater