The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts

Mark Aplin, Gitte Lund Christensen, Mikael Schneider, Arne Heydorn, Steen Gammeltoft, Anne Louise Kjølbye, Søren P Sheikh, Jakob Lerche Hansen

55 Citationer (Scopus)

Abstract

The angiotensin II (AngII) type 1 receptor (AT(1)R) has been shown to activate extracellular signal-regulated kinases 1 and 2 (ERK1/2) through G proteins or G protein-independently through beta-arrestin2 in cellular expression systems. As activation mechanisms may greatly influence the biological effects of ERK1/2 activity, differential activation of the AT(1)R in its native cellular context could have important biological and pharmacological implications. To examine if AT(1)R activates ERK1/2 by G protein-independent mechanisms in the heart, we used the [Sar(1), Ile(4), Ile(8)]-AngII ([SII] AngII) analogue in native preparations of cardiac myocytes and beating hearts. We found that [SII] AngII does not activate G(q)-coupling, yet stimulates the beta-arrestin2-dependent ERK1/2. The G(q)-activated pool of ERK1/2 rapidly translocates to the nucleus, while the beta-arrestin2-scaffolded pool remains in the cytosol. Similar biased agonism was achieved in Langendorff-perfused hearts, where both agonists elicit ERK1/2 phosphorylation, but [SII] AngII induces neither inotropic nor chronotropic effects.
OriginalsprogEngelsk
TidsskriftBasic & Clinical Pharmacology & Toxicology
Vol/bind100
Udgave nummer5
Sider (fra-til)289-95
Antal sider7
ISSN1742-7835
DOI
StatusUdgivet - maj 2007

Fingeraftryk

Dyk ned i forskningsemnerne om 'The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts'. Sammen danner de et unikt fingeraftryk.

Citationsformater