Steady-state selection and efficient covariance matrix update in the multi-objective CMA-ES

Christian Igel*, Thorsten Suttorp, Nikolaus Hansen

*Corresponding author af dette arbejde
34 Citationer (Scopus)

Abstract

The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) combines a mutation operator that adapts its search distribution to the underlying optimization problem with multicriteria selection. Here, a generational and two steady-state selection schemes for the MO-CMA-ES are compared. Further, a recently proposed method for computationally efficient adaptation of the search distribution is evaluated in the context of the MO-CMA-ES.

OriginalsprogEngelsk
TitelEvolutionary Multi-Criterion Optimization : 4th International Conference, EMO 2007, Matsushima, Japan, March 5-8, 2007. Proceedings
RedaktørerShigeru Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, Tadahiko Murata
Antal sider15
ForlagSpringer
Publikationsdato2007
Sider171-185
ISBN (Trykt)978-3-540-70927-5
ISBN (Elektronisk)978-3-540-70928-2
DOI
StatusUdgivet - 2007
Udgivet eksterntJa
Begivenhed4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007 - Matsushima, Japan
Varighed: 5 mar. 20078 mar. 2007

Konference

Konference4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007
Land/OmrådeJapan
ByMatsushima
Periode05/03/200708/03/2007
NavnLecture notes in computer science
Vol/bind4403
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Steady-state selection and efficient covariance matrix update in the multi-objective CMA-ES'. Sammen danner de et unikt fingeraftryk.

Citationsformater