Abstract
Quantum nanophotonics has become a new research frontier where quantum optics is combined with nanophotonics in order to enhance and control the interaction between strongly confined light and quantum emitters. Such progress provides a promising pathway towards quantuminformation processing on an all-solid-state platform. Here we review recent progress on experiments with quantum dots in nanophotonic structures with special emphasis on the dynamics of single-photon emission. Embedding the quantum dots in photonic band-gap structures offers a way of controlling spontaneous emission of single photons to a degree that is determined by the local light-matter coupling strength. Introducing defects in photonic crystals implies new functionalities. For instance, efficient and strongly confined cavities can be constructed enabling cavity-quantumelectrodynamics experiments. Furthermore, the speed of light can be tailored in a photonic-crystal waveguide forming the basis for highly efficient single-photon sources where the photons are channeled into the slowly propagating mode of the waveguide. Finally, we will discuss some of the surprises that arise in solid-state implementations of quantum-optics experiments in comparison to their atomic counterparts. In particular, it will be shown that the celebrated point-dipole description of light-matter interaction can break down when quantum dots are coupled to plasmon nanostructures.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Nanophotonics |
Vol/bind | 2 |
Udgave nummer | 1 |
Sider (fra-til) | 39-55 |
ISSN | 2192-8606 |
Status | Udgivet - 1 feb. 2013 |