Restriction to finite-index subgroups as étale extensions in topology, KK–theory and geometry

Paul Balmer, Ivo Dell’Ambrogio, Beren Sanders

9 Citationer (Scopus)

Abstract

For equivariant stable homotopy theory, equivariant KK–theory and equivariant derived categories, we show how restriction to a subgroup of finite index yields a finite commutative separable extension, analogous to finite étale extensions in algebraic geometry.

OriginalsprogEngelsk
TidsskriftAlgebraic & Geometric Topology
Vol/bind15
Udgave nummer5
Sider (fra-til)3025–3047
ISSN1472-2747
DOI
StatusUdgivet - 12 nov. 2015

Fingeraftryk

Dyk ned i forskningsemnerne om 'Restriction to finite-index subgroups as étale extensions in topology, KK–theory and geometry'. Sammen danner de et unikt fingeraftryk.

Citationsformater