TY - JOUR
T1 - Real-time, high-throughput measurements of peptide-MHC-I dissociation using a scintillation proximity assay
AU - Harndahl, Mikkel
AU - Rasmussen, Michael
AU - Røder, Gustav Andreas
AU - Buus, Søren
N1 - Copyright © 2010 Elsevier B.V. All rights reserved.
PY - 2011/11/30
Y1 - 2011/11/30
N2 - Efficient presentation of peptide-MHC class I complexes to immune T cells depends upon stable peptide-MHC class I interactions. Theoretically, determining the rate of dissociation of a peptide-MHC class I complexes is straightforward; in practical terms, however, generating the accurate and closely timed data needed to determine the rate of dissociation is not simple. Ideally, one should use a homogenous assay involving an inexhaustible and label-free assay principle. Here, we present a homogenous, high-throughput peptide-MHC class I dissociation assay, which by and large fulfill these ideal requirements. To avoid labeling of the highly variable peptide, we labeled the invariant β2m and monitored its dissociation by a scintillation proximity assay, which has no separation steps and allows for real-time quantitative measurement of dissociation. Validating this work-around to create a virtually label-free assay, we showed that rates of peptide-MHC class I dissociation measured in this assay correlated well with rates of dissociation rates measured conventionally with labeled peptides. This assay can be used to measure the stability of any peptide-MHC class I combination, it is reproducible and it is well suited for high-throughput screening. To exemplify this, we screened a panel of 384 high-affinity peptides binding to the MHC class I molecule, HLA-A*02:01, and observed the rates of dissociation that ranged from 0.1. h to 46. h depending on the peptide used.
AB - Efficient presentation of peptide-MHC class I complexes to immune T cells depends upon stable peptide-MHC class I interactions. Theoretically, determining the rate of dissociation of a peptide-MHC class I complexes is straightforward; in practical terms, however, generating the accurate and closely timed data needed to determine the rate of dissociation is not simple. Ideally, one should use a homogenous assay involving an inexhaustible and label-free assay principle. Here, we present a homogenous, high-throughput peptide-MHC class I dissociation assay, which by and large fulfill these ideal requirements. To avoid labeling of the highly variable peptide, we labeled the invariant β2m and monitored its dissociation by a scintillation proximity assay, which has no separation steps and allows for real-time quantitative measurement of dissociation. Validating this work-around to create a virtually label-free assay, we showed that rates of peptide-MHC class I dissociation measured in this assay correlated well with rates of dissociation rates measured conventionally with labeled peptides. This assay can be used to measure the stability of any peptide-MHC class I combination, it is reproducible and it is well suited for high-throughput screening. To exemplify this, we screened a panel of 384 high-affinity peptides binding to the MHC class I molecule, HLA-A*02:01, and observed the rates of dissociation that ranged from 0.1. h to 46. h depending on the peptide used.
U2 - 10.1016/j.jim.2010.10.012
DO - 10.1016/j.jim.2010.10.012
M3 - Journal article
C2 - 21044632
SN - 0022-1759
JO - Journal of Immunological Methods
JF - Journal of Immunological Methods
ER -