Abstract
Let AiAi be a family of unital C¿C¿-algebras, respectively, of von Neumann algebras and ¿:N0¿C¿:N0¿C. We show that if a Hankel matrix related to ¿ is trace-class, then there exists a unique completely bounded map M¿M¿ on the reduced free product of the AiAi, which acts as a radial multiplier. Hereby we generalize a result of Wysoczanski for Herz–Schur multipliers on reduced group C¿C¿-algebras for free products of groups.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Functional Analysis |
Vol/bind | 263 |
Udgave nummer | 8 |
Sider (fra-til) | 2507-2528 |
ISSN | 0022-1236 |
Status | Udgivet - 15 okt. 2012 |