TY - JOUR
T1 - Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps
AU - Rubatto, Daniela
AU - Hermann, Jörg
AU - Berger, Alfons
AU - Engi, Martin
N1 - Paper id:: 10,1007/s00410-009-0406-5
PY - 2009
Y1 - 2009
N2 - The timing and dynamics of fluid-induced melting in the typical Barrovian sequence of the Central Alps has been investigated using zircon chronology and trace element composition. Multiple zircon domains in leucosomes and country rocks yield U-Pb ages spanning from ~32 to 22 Ma. The zircon formed during Alpine melting can be distinguished from the inherited and detrital cores on the basis of their age, Th/U (<0.1) and trace element composition. Ti-in-zircon thermometry indicates crystallization temperatures around 620-700°C. Their composition allows discriminating between (1) zircon formation in the presence of early garnet, (2) zircon in equilibrium with abundant L-MREE-rich accessory phases (allanite, titanite and apatite) typical of metatonalites, and (3) zircon formed during melting of metasediments in feldspar-dominated assemblages. The distribution of zircon overgrowths and ages indicate that repeated melting events occurred within a single Barrovian metamorphic cycle at roughly constant temperature; that in the country rocks zircon formation was limited to the initial stages of melting, whereas further melting concentrated in the segregated leucosomes; that melting occurred at different times in samples a few meters apart because of the local rock composition and localized influx of the fluids; and that leucosomes were repeatedly melted when fluids became available. The geochronological data force a revision of the temperature-time path of the migmatite belt in the Central Alps. Protracted melting over 10 My followed the fast exhumation of Alpine eclogites contained within the same region and preceded fast cooling in the order of 100°C/Ma to upper crustal levels.
AB - The timing and dynamics of fluid-induced melting in the typical Barrovian sequence of the Central Alps has been investigated using zircon chronology and trace element composition. Multiple zircon domains in leucosomes and country rocks yield U-Pb ages spanning from ~32 to 22 Ma. The zircon formed during Alpine melting can be distinguished from the inherited and detrital cores on the basis of their age, Th/U (<0.1) and trace element composition. Ti-in-zircon thermometry indicates crystallization temperatures around 620-700°C. Their composition allows discriminating between (1) zircon formation in the presence of early garnet, (2) zircon in equilibrium with abundant L-MREE-rich accessory phases (allanite, titanite and apatite) typical of metatonalites, and (3) zircon formed during melting of metasediments in feldspar-dominated assemblages. The distribution of zircon overgrowths and ages indicate that repeated melting events occurred within a single Barrovian metamorphic cycle at roughly constant temperature; that in the country rocks zircon formation was limited to the initial stages of melting, whereas further melting concentrated in the segregated leucosomes; that melting occurred at different times in samples a few meters apart because of the local rock composition and localized influx of the fluids; and that leucosomes were repeatedly melted when fluids became available. The geochronological data force a revision of the temperature-time path of the migmatite belt in the Central Alps. Protracted melting over 10 My followed the fast exhumation of Alpine eclogites contained within the same region and preceded fast cooling in the order of 100°C/Ma to upper crustal levels.
U2 - 10.1007/s00410-009-0406-5
DO - 10.1007/s00410-009-0406-5
M3 - Journal article
SN - 0010-7999
VL - 158
SP - 703
EP - 722
JO - Contributions to Mineralogy and Petrology
JF - Contributions to Mineralogy and Petrology
IS - 6
ER -