Abstract
Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors such as structure, accessibility and amino acid composition are crucial. Since small peptides tend not to be immunogenic, it may be necessary to conjugate them to carrier proteins in order to enhance immune presentation. Several strategies for conjugation of peptide-carriers applied for immunization exist, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH) 3 are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody purification, the antibodies are characterized based on their affinity or specificity. An efficient approach for characterization of peptide antibodies is epitope mapping using peptide based assays. This review describes standard solid-phase approaches for generation of peptide antibodies with special emphasis on peptide selection, generation of peptide conjugates for immunization and characterization of the resulting peptide antibodies.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Methods |
Vol/bind | 56 |
Udgave nummer | 2 |
Sider (fra-til) | 136-144 |
Antal sider | 9 |
ISSN | 1046-2023 |
DOI | |
Status | Udgivet - feb. 2012 |