Overconvergent de Rham-Witt cohomology

Christopher James Davis, Andreas Langer, Thomas Zink

14 Citationer (Scopus)
1058 Downloads (Pure)

Abstract

The goal of this work is to construct, for a smooth variety X over a perfect field k of finite characteristic p > 0, an overconvergent de Rham-Witt complex WyX=k as a suitable sub-complex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in X, is a complex of etale sheaves and a differential graded algebra over the ring Wy( OX) of Overconvergent Witt-vectors. If X is affine one proves that there is a isomorphism between Monsky-Washnitzer cohomology and (rational) overconvergent de Rham-Witt cohomology. Finally we define for a quasiprojective X an isomorphism between the rational overconvergent de Rham-Witt cohomology and the rigid cohomology.
OriginalsprogEngelsk
TidsskriftAnnales Scientifiques de l'Ecole Normale Superieure
Vol/bind44
Udgave nummer2
Antal sider197
ISSN0012-9593
StatusUdgivet - 2011

Fingeraftryk

Dyk ned i forskningsemnerne om 'Overconvergent de Rham-Witt cohomology'. Sammen danner de et unikt fingeraftryk.

Citationsformater