Operator space theory: a natural framework for bell inequalities

M. Junge, C. Palazuelos, D. Perez-Garcia, I. Villanueva, Michael Marc Wolf

38 Citationer (Scopus)

Abstract

In this Letter we show that the field of operator space theory provides a general and powerful mathematical framework for arbitrary Bell inequalities, in particular, regarding the scaling of their violation within quantum mechanics. We illustrate the power of this connection by showing that bipartite quantum states with local, Hilbert space dimension n can violate a Bell inequality by a factor of order √n/(log2n) when observables with n possible outcomes are used. Applications to resistance to noise, Hilbert space dimension estimates, and communication complexity are given.

OriginalsprogEngelsk
TidsskriftPhysical Review Letters
Vol/bind104
Udgave nummer17
Sider (fra-til)170405
Antal sider4
ISSN0031-9007
DOI
StatusUdgivet - 29 apr. 2010

Fingeraftryk

Dyk ned i forskningsemnerne om 'Operator space theory: a natural framework for bell inequalities'. Sammen danner de et unikt fingeraftryk.

Citationsformater