Abstract
We prove that the volumes determined by the lengths of the non-zero vectors ±x in a random lattice L of covolume 1 define a stochastic process that, as the dimension n tends to infinity, converges weakly to a Poisson process on the positive real line with intensity 1/2. This generalizes earlier results by Rogers (Proc Lond Math Soc (3) 6:305-320, 1956, Thm. 3) and Schmidt (Acta Math 102:159-224, 1959, Satz 10).
Originalsprog | Engelsk |
---|---|
Tidsskrift | Mathematische Zeitschrift |
Vol/bind | 269 |
Udgave nummer | 3-4 |
Sider (fra-til) | 945-954 |
ISSN | 0025-5874 |
Status | Udgivet - dec. 2011 |