On the Poisson distribution of lengths of lattice vectors in a random lattice

Carl Anders Södergren

13 Citationer (Scopus)

Abstract

We prove that the volumes determined by the lengths of the non-zero vectors ±x in a random lattice L of covolume 1 define a stochastic process that, as the dimension n tends to infinity, converges weakly to a Poisson process on the positive real line with intensity 1/2. This generalizes earlier results by Rogers (Proc Lond Math Soc (3) 6:305-320, 1956, Thm. 3) and Schmidt (Acta Math 102:159-224, 1959, Satz 10).

OriginalsprogEngelsk
TidsskriftMathematische Zeitschrift
Vol/bind269
Udgave nummer3-4
Sider (fra-til)945-954
ISSN0025-5874
StatusUdgivet - dec. 2011

Fingeraftryk

Dyk ned i forskningsemnerne om 'On the Poisson distribution of lengths of lattice vectors in a random lattice'. Sammen danner de et unikt fingeraftryk.

Citationsformater