On regularization parameter estimation under covariate shift

Wouter M. Kouw, Marco Loog

1 Citationer (Scopus)

Abstract

This paper identifies a problem with the usual procedure for L2-regularization parameter estimation in a domain adaptation setting. In such a setting, there are differences between the distributions generating the training data (source domain) and the test data (target domain). The usual cross-validation procedure requires validation data, which can not be obtained from the unlabeled target data. The problem is that if one decides to use source validation data, the regularization parameter is underestimated. One possible solution is to scale the source validation data through importance weighting, but we show that this correction is not sufficient. We conclude the paper with an empirical analysis of the effect of several importance weight estimators on the estimation of the regularization parameter.

OriginalsprogEngelsk
Titel23rd International Conference on Pattern Recognition, ICPR 2016
Antal sider6
ForlagIEEE
Publikationsdato1 jan. 2016
Sider426-431
ISBN (Elektronisk)978-1-5090-4847-2
DOI
StatusUdgivet - 1 jan. 2016
Begivenhed23rd International Conference on Pattern Recognition - Cancun, Mexico
Varighed: 4 dec. 20168 dec. 2016
Konferencens nummer: 23

Konference

Konference23rd International Conference on Pattern Recognition
Nummer23
Land/OmrådeMexico
ByCancun
Periode04/12/201608/12/2016

Fingeraftryk

Dyk ned i forskningsemnerne om 'On regularization parameter estimation under covariate shift'. Sammen danner de et unikt fingeraftryk.

Citationsformater