Multi-objective neural network optimization for visual object detection

Stefan Roth*, Alexander Gepperth, Christian Igel

*Corresponding author af dette arbejde
13 Citationer (Scopus)

Abstract

In real-time computer vision, there is a need for classifiers that detect patterns fast and reliably. We apply multi-objective optimization (MOO) to the design of feed-forward neural networks for real-world object recognition tasks, where computational complexity and accuracy define partially conflicting objectives. Evolutionary structure optimization and pruning are compared for the adaptation of the network topology. In addition, the results of MOO are contrasted to those of a single-objective evolutionary algorithm. As a part of the evolutionary algorithm, the automatic adaptation of operator probabilities in MOO is described.

OriginalsprogEngelsk
TitelMulti-objective machine learning
RedaktørerYaochu Jin
Antal sider27
Vol/bindV
Publikationsdato2006
Sider629-655
ISBN (Trykt)978-3-540-30676-4
ISBN (Elektronisk)978-3-540-33019-6
DOI
StatusUdgivet - 2006
Udgivet eksterntJa
NavnStudies in Computational Intelligence
Vol/bind16
ISSN1860-949X

Fingeraftryk

Dyk ned i forskningsemnerne om 'Multi-objective neural network optimization for visual object detection'. Sammen danner de et unikt fingeraftryk.

Citationsformater