Metric learning by directly minimizing the k-NN training error

Konstantin Chernoff, Marco Loog, Mads Nielsen

1 Citationer (Scopus)

Abstract

This paper presents an approach for computing global distance metrics that minimize the k-NN leave-one-out (LOO) error. The approach optimizes an energy function that corresponds to a smoothened version of the k-NN LOO error. The generalization of the proposed approach is further improved by controlling the k parameter through a heuristic. Evaluation of the proposed approach on several public datasets showed that it was able to compete with an established state-of-the art approach.

OriginalsprogEngelsk
Titel2012 21st International Conference on Pattern Recognition (ICPR)
Antal sider4
ForlagIEEE
Publikationsdato2012
Sider1265-1268
ISBN (Trykt)978-1-4673-2216-4
StatusUdgivet - 2012
Begivenhed21st International Conference on Pattern Recognition - Tsukuba Science City , Japan
Varighed: 11 nov. 201215 nov. 2012
Konferencens nummer: 21

Konference

Konference21st International Conference on Pattern Recognition
Nummer21
Land/OmrådeJapan
ByTsukuba Science City
Periode11/11/201215/11/2012

Emneord

  • learning (artificial intelligence)
  • LOO error minimization
  • energy function
  • global distance metrics
  • k-NN training error minimization
  • leave-one-out error minimization
  • metric learning
  • public datasets
  • Art
  • Iris
  • Machine learning
  • Measurement
  • Optimization
  • Training
  • Vectors

Citationsformater